深度学习基础--DPM(Deformable Part Model)/形变层/形变池化层

DPM(Deformable Part Model)/形变层/形变池化层

  在CV研究领域中,一些学者将深度学习模型视为黑盒子,实际上研究表明传统计算机视觉系统和深度学习模型存在密切的联系,而且可以利用传统的特征以及上述联系,设计出新的深度模型和新的训练方法。

例子1

  用于行人检测的联合深度学习,一个行人检测器包括了特征提取、部件检测器、部件集合形变建模、部件遮挡推理、分类器等等,在联合深度模型算法中,深度模型的每个层和视觉系统的各个模块可以建立起一定的对应关系。
  当视觉系统中存在一些关键模块在现有的深度学习模型中没有与之对应的层,这就启发了我们设计出新的深度模型,在人脸检测中同样常用的物体部件的几何形变建模DPM,研究证明DPM算法可以有效提高检测率,但是常见的深度模型中没有与之对应的层,有学者就相应地提出了新的形变层和形变池化层以实现这一功能。

例子2

  在图像及视频相关应用中,最成功的深度卷积网络(DCNN),它采用两个重要操作——卷积与池化正是利用与图像相关的特殊结构而设计的,其中池化起到降维效果同时带来了局部的平移不变性。而且已经有人把卷积核改进到加权PCA矩阵,做出深度特征脸卷积神经网络了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值