卷积:
中间那个就是卷积核了,其实就是3x3的方格,里面填一些数字,然后和原始图像进行对应位置相乘求和。
转置卷积或反卷积:
https://blog.csdn.net/lanadeus/article/details/82534425
卷积图示操作链接(包含卷积、反卷积(转置卷积)和步长dilation padding对卷积影响):
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md#dilated-convolution-animations
棋盘效应(转置卷积上采样时引起):
https://www.cnblogs.com/hellcat/p/9707204.html
pytorch nn.Conv2d:
https://www.cnblogs.com/jiading/p/11943983.html
其中设置的out_channels是卷积核的个数,也就是输出特征图的个数。in_channels同理。
roi pooling:
https://blog.csdn.net/yychentracy/article/details/100172729
可变性卷积+池化:
https://www.jianshu.com/p/206e7b0cb433