深度学习基础--正则化与norm--Weight Normalization

Weight Normalization

  即权重归一化,也就是对权重值进行归一化。

优点

  1)WN是通过重写深度网络的权重来进行加速的,没有引入对minibatch的依赖,更适合于RNN网络
  2)引入更少的噪声
  3)不需要额外的空间进行存储minibatch的均值和方差,对时间的开销也小,所以速度会更快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值