凯利公式助你获得更多收益

本文介绍了凯利公式在投资中的应用,通过模拟不同仓位下的收益情况,揭示了如何通过公式计算最佳投注比例以实现长期收益最大化。文章讨论了胜率、赔率对投资策略的影响,并通过实例展示了仓位选择对于收益稳定性与增长速度的权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前不久,在张丹老师博客看到了一篇凯利公式的文章,感觉很有意思,但一些核心代码,博客上(http://blog.fens.me/finance-kelly/)并没有提供,仔细学习后,用Python实现了那些核心代码,如果需要的话可以在文末点击阅读原文在我的GitHub上进行查看。

凯里公式是这样的:假设有一个游戏赌局,你赢的概率是80%,输的概率是20%,赢时的净收益率是100%,输时的亏损率也是100%。如果赢,你每赌1元,那么赢得1元;如果输,则每赌1元,就会输掉1元。赌局可以进行无限次,每次下的赌注可由你自己任意定。如果你的初始资金是100元,那么怎么样下注,即你每次赌多钱,多少仓位,才能使得长期收益最大?

对于胜率80%,从感觉上应该是很有把握的事情了。那么我们先主观判断一次,用90%的仓位去赌一下,看看结果怎么呢?如果下注10次,按80%胜率,8次胜,2次负。我们来模拟10次,计算一下最后的结果,最终可以获利69.84.

数据表格

    win      dat
0   1  190.000000
1   0   19.000000
2   1   36.100000
3   1   68.590000
4   1  130.321000
5   1  247.609900
6   1  470.458810
7   0   47.045881
8   1   89.387174
9   1  169.835630

资金曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值