15、强化学习在自动驾驶规划与控制中的应用

强化学习在自动驾驶规划与控制中的应用

一、引言

在解决运动规划和控制问题时,虽然基于优化的方法仍是主流,但随着人工智能的发展,基于学习的方法越来越受欢迎。尤其是强化学习,已被广泛用于解决按回合或时间步进行、带有奖励等逐步引导信息的问题,在自动驾驶规划和控制领域也得到了应用尝试。

传统的规划和控制框架通常包括路由、交通预测、行为决策、运动规划和反馈控制等模块。其中,行为决策方案采用场景和规则的层次结构来确保安全,运动规划和反馈控制模块则是在特定约束下解决优化问题。不过,基于学习的方法正逐渐吸引研究者的关注。

有三个主要原因促使我们重视基于强化学习的规划和控制方法:
1. 应用场景的局限性 :目前自动驾驶仍处于早期阶段,实际应用场景的挑战性远不及真实的无限制城市环境。大多数自动驾驶车辆的测试都在有限区域或特定受限路线进行,在这些有限场景下,基于优化的方法无法保证能应对所有现实世界的无限制道路情况。
2. 历史驾驶数据未充分利用 :优化方法通常将规划问题转化为数学优化问题,目标是在特定约束下最大化某些奖励(最小化某些成本),其优化目标和约束往往基于人类经验或启发式方法。然而,人类经验和启发式方法的表达有限,难以涵盖所有极端情况,且未充分利用人类驾驶的历史数据。在大数据时代,大量的驾驶数据已被积累,如何利用这些数据来增强自动驾驶车辆的规划和控制仍是一个挑战,而基于学习的方法自然可以利用历史驾驶数据。
3. 人类驾驶学习方式 :人类驾驶员通常是通过教练的反馈和指导来学习驾驶,而不是通过优化成本或目标。强化学习通过与环境进行迭代交互来学习,与人类驾驶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值