GAN网络学习心得(通俗篇)+代码

简介:

GAN网络中文名:生成对抗网络。生成对抗网络其实是两个网络的组合:生成网络(Generator)负责生成模拟数据(造假);判别网络(Discriminator)负责判断输入的数据是真实的还是生成的(检验)。两个网络相互对抗中,不断更新优化自己的参数,直到达到平衡状态。

网络结构:

生成器(Generator):通过机器生成数据(大部分情况下是图像),最终目的是“骗过”判别器。诈骗成功。

判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据”。练成火眼晶晶,段真假。

模型训练过程阐述:

这是一个生成器和判别器博弈的过程。生成器生成假数据,然后将生成的假数据和真数据都输入判别器,判别器要判断出哪些是真的哪些是假的。判别器第一次判别出来的肯定有很大的误差,然后我们根据误差来优化判别器。现在判别器水平提高了,生成器生成的数据很难再骗过判别器了,所以我们得反过来优化生成器,之后生成器水平提高了,然后反过来继续训练判别器,判别器水平又提高了,再反过来训练生成器,就这样循环往复,直到达到均衡。

损失函数:

生成网络和对抗网络的优化是如何实现的?继续往下走,这就涉及到两个核心的问题神经网络的架构和损失函数 (loss function)。神经网络架构为全连接层结构这里不在赘述。主要介绍损失函数,它是能够实现优化(训练)的基本要素。

生成器损失函数

G(Loss)=H(1,D(G(Z)))

上式中,G 代表生成网络,D 代表判别网络,H 代表交叉熵,z 是输入随机数据。 D(G(Z))是对生成数据的判断概率,1代表数据绝对真实,0代表数据绝对虚假。 代表判断结果与1的距离。显然生成网络想取得良好的效果,那就要做到,让判别器将生成数据判别为真数据(即D(G(Z))与1的距离越小越好)。

判别器损失函数

D(Loss)=H(1,D(X))+H(0,G(Z))

上式中,X是真实数据,这里要注意的是,H(1,D(X))代表真实数据与1的距离,H(0,D(G(z)))代表生成数据与0的距离。显然,识别网络要想取得良好的效果,那么就要做到,在它眼里,真实数据就是真实数据,生成数据就是虚假数据(即真实数据与1的距离小,生成数据与0的距离小)。

优化原理:生成网络和判别网络有了损失函数,就可以基于各自的损失函数,利用误差反向传播(Backpropagation)(BP)反向传播算法和最优化方法(如梯度下降法)来实现参数的调整),不断提高生成网络和判别网络的性能(最终生成网络和判别网络的成熟状态就是学习到了合理的映射函数)。

心得:

总结:生成对抗网络,类似于强化学习的思想,让两个模型相互竞争,在竞争中优化,直到达到最优平衡点。核心是损失函数和网络结构

代码:

生成器代码:

import torch.nn as nn

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img

判别器代码:

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity

损失函数:

采取交叉熵损失函数:

# Loss function
adversarial_loss = torch.nn.BCELoss()

加载数据集:
 

# Configure data loader
os.makedirs("./data/mnist", exist_ok=True) # 加载数据集,地址./data/mnist
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),#transforms.Resize 将输入图像(PIL Image or Tensor)调整为给定的大小opt.img_size 
    ),
    batch_size=opt.batch_size,#opt.batch_size 设置batch默认为128
    shuffle=True,
)

训练网络:

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))


Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

先定义标签,Gan模型,所以标签需要重新定义,根据batch大小,valid标签大小为batch*1且值为1,fake标签大小为batch*1且值为0

valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

生成器损失函数:生成器期望,判别器判断时,判断生成图像为真,即标签为1。更新梯度,优化模型。

g_loss = adversarial_loss(discriminator(gen_imgs), valid)

判别器损失函数:判别器期望,生成器生成的图片为假,标签为0;真实图片为真,标签为1。取两损失均值作为判别器损失函数,更新梯度,优化模型。

real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)

此为gan代码的基础版,但是网络思路一直是这个思路,希望大家能在此基础上设计出更好,更优的模型。

完整代码:

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=100, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=128, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))


Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

参考:

http://t.csdnimg.cn/ukHFG

https://github.com/yfeng95/GAN

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值