滑模控制以及系统动力学与控制论(3)

上面说的其实都是要基于系统状态方程.如何获得一个系统的状态方程放后面去和等效原理一起讨论.这里只是简单说一下.对一个动力学系统,一般地,最终可以用两种办法获得系统状态方程.对于对物理不熟悉的人来说.可以用拉各朗日方法(Lagrangian Dynamics),用系统动能与系统势能的差来定义一个拉各朗日函数.然后基于这个拉各朗日函数来获得系统状态方程.对于熟悉物理的人来说,还是直接使用牛顿欧拉办法(Newton-Euler Dynamics), 实际上也就是运用力矩和牛顿第二定律, 来获得系统状态方程.

下面假定我们已经获得了系统状态方程.为方便讨论,以一个简单的二阶微分方程为例来说明如果用李亚普诺夫稳定性原理以及滑模控制理论来实现对相应系统的控制.

这是一个倒摆的状态方程. 其中的Theta下面用q表示.一阶微分用 q' 表示,二阶微分用 q" 表示.

式中I是系统惯量. q 是系统输出. 也就是倒摆转过的角度. m是倒摆的质量, g是万有引力常数, l是质心到转轴的距离.右边的Tao 是倒摆受到的力矩,也就是系统输入,以后用u表示.

其中的g和l是可以确切知道的.m和I未定.假定 R 是参考信号.也就是我们想要这个倒摆怎么动的一个参考. u是我们要得到的控制信号.怎么样产生一个控制信号让这个倒摆的输出 q 符合 参考信号R ,并且保证系统的稳定性(Stability), 可靠性(Reliability) 和 鲁棒性(这个我真不知道为什么国内是这样翻译的....英文是 Robustness, 指的是系统的抗干扰能力). 这就是我们要做的.

首先定义切换面 S=0. 因为我们需要的是输出 q 符合参考信号R, 所以定义一个误差参数 e = R - q, 接着由 e 来定义切换面S. 令 S = e' + ke. 这样定义的目的是, 在切换面上,满足 S=0, 所以会有 e'+ke=0, 而这个微分方程的解是e=exp(-kt). 也就是说误差e指数收敛.这就意味着当时间趋向无穷大的时候, q 渐近趋近参考信号R.

 http://www.xbstudio.net/blog/?tid=20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值