matlab仿真之大尺度衰落因子2--小区间

matlab仿真之大尺度衰落因子2--小区间

1.提出问题

已知大尺度衰落因子的公式为 β l j k = z l j k ( r l j k / R ) α \beta_{ljk}=\frac{z_{ljk}}{({r_{ljk}/R})^\alpha} βljk=(rljk/R)αzljk上篇文章分析了小区内的 r l j k r_{ljk} rljk产生只要产生服从均匀分布的距离就可以了,那么小区间的距离服从什么分布呢?他应该怎么具体表示呢?

2.尝试解决

在这里插入图片描述
假设在随机生成 r r r的时候在同时在圆内生成一个角度 b b b,角 a a a和边 d d d是已知的,这样,我们可以很方便地利用余弦定理计算出小区内的终端设备到另一个小区的距离 c 2 = r 2 + d 2 − 2 r d c o s ( ∠ a − ∠ b ) c^2=r^2+d^2-2rdcos(∠a-∠b) c2=r2+d22rdcos(ab)
到这里计算公式中的各个变量的表示工作暂告一段落,接下来就要研究怎么样将循环套入其中,产生更加合理的结果。

3.增益因子 γ \gamma γ

因为速率公式中有看不懂的地方,所以决定好好研究一下公式的推导过程 R s 1 u = T u T ∑ k = 1 K log ⁡ 2 ( 1 + p u 2 τ β s , s , k 2 δ s 1 ( M − 1 ) / Q ) R_{s_{1}}^{u} =\frac{T_{u}}{T} \sum_{k=1}^{K} \log _{2}\left(1+p_{u}^{2} \tau \beta_{s, s, k}^{2} \delta_{s_{1}}(M-1) / Q\right) Rs1u=TTuk=1Klog2(1+pu2τβs,s,k2δs1(M1)/Q) Q = ( ∑ j = 1 C 1 , ∩ Θ p u p u τ β s , s t 2 δ s l M + ∑ j = 1 L ∑ i = 1 K p u β s , s i , t ) γ s , s , k 2 − ( ∑ j = 1 C 1 ∩ Θ p u β s , s 1 , k + 1 ) γ s , s , k 2 + ( δ s 1 − 2 γ s , s 1 k ) p u 2 τ β s 1 , s k 2 M Q =\left(\sum_{j=1}^{C_{1},\cap{\Theta}} p_{u} \frac{p_{u} \tau \beta_{s, s_{t}}^{2}}{\delta_{s_{l}}} M+\sum_{j=1}^{L} \sum_{i=1}^{K} p_{u} \beta_{s, s_{i}, t}\right)\gamma_{s, s, k}^{2}\\ -\left(\sum_{j=1}^{C_{1} \cap \Theta} p_{u} \beta_{s, s_{1}, k} +1\right) \gamma_{s, s, k}^{2}\\ +\left(\delta_{s_{1}}-2 \gamma_{s, s_{1} k}\right) p_{u}^{2} \tau \beta_{s_{1}, s_{k}}^{2} M Q=(j=1C1,Θpuδslpuτβs,st2M+j=1Li=1Kpuβs,si,t)γs,s,k2(j=1C1Θpuβs,s1,k+1)γs,s,k2+(δs12γs,s1k)pu2τβs1,sk2M由下面公式可以知道 E [ 1 S s 1 k u ] = 1 p u ∥ E [ g ^ s 1 s 1 k H g ^ s 1 s 1 k ] ∥ ( M − 1 ) = 1 p u 2 τ β s 1 s 1 k 2 δ s 1 ( M − 1 ) E\left[\frac{1}{S_{s_{1} k}^{u}}\right]=\frac{1}{p_{u}\left\|E\left[\hat{g}_{s_{1} s_{1} k}^{H} \hat{g}_{s_{1}s_{1} k}\right]\right\|(M-1)} \\ =\frac{1}{p_{u}^{2} \tau \beta_{s_{1} s_{1}k}^{2} \delta_{s_{1}}(M-1)} E[Ss1ku1]=puE[g^s1s1kHg^s1s1k](M1)1=pu2τβs1s1k2δs1(M1)1即可以把 ∥ E [ g ^ s 1 s 1 k H g ^ s 1 s 1 k ] ∥ \left\|E\left[\hat{g}_{s_{1} s_{1} k}^{H} \hat{g}_{s_{1}s_{1} k}\right]\right\| E[g^s1s1kHg^s1s1k]表示为 τ β s 1 s 1 k 2 δ s 1 \tau \beta_{s_{1} s_{1}k}^{2} \delta_{s_{1}} τβs1s1k2δs1的样子,同理,我们也可以推导出别的公式的形式

主要需要考虑信道估计效果提升了以后对信道速率的提升情况
信道估计情况变好的话,会提高信噪比,进而提高速率

目前遇到的问题

  • γ s 1 s 1 k \gamma_{s_1s_1k} γs1s1k γ s j s 1 k \gamma_{s_js_1k} γsjs1k的具体表达式需要搞清楚
    γ s j s l k = ζ s l + p u τ ∑ i = 1 C 1 ∩ Θ β ~ s i s l , s j k \gamma_{s_{j} s_{l} k}=\zeta_{s_{l}}+p_{u} \tau \sum_{i=1}^{C_{1} \cap \Theta} \tilde{\beta}_{s_{i} s_{l}, s_{j} k} γsjslk=ζsl+puτi=1C1Θβ~sisl,sjk所以现在未知的参数变成了 ζ s l \zeta_{s_{l}} ζsl β ~ s i s l , s j k \tilde{\beta}_{s_{i} s_{l}, s_{j} k} β~sisl,sjk,这不禁让我感到气愤,这两个参数又是什么鬼啊!(ps:这科研搞不下去啦,昨天因为这个觉都没有睡好o(╥﹏╥)o。 ζ s l \zeta_{s_{l}} ζsl是从哪里冒出来的? β ~ s i s l , s j k \tilde{\beta}_{s_{i} s_{l}, s_{j} k} β~sisl,sjk这个参数你之前也没有提到啊???)

吐槽到此结束,下面开始分析问题。先做再看吧
ζ s l = p d ∑ j = 1 c ^ 1 ∩ θ ( α s j s l K ) + 1 \zeta_{s_{l}}=p_d \sum_{j=1}^{\hat c_1 \cap \theta}(\frac{\alpha_{s_js_l}}{K})+1 ζsl=pdj=1c^1θ(Kαsjsl)+1这个表示我们是知道的,接着研究part 2, β ~ s i s l , s j k \tilde{\beta}_{s_{i} s_{l}, s_{j} k} β~sisl,sjk 有公式MMSE估计 G ^ s j 1 = p u τ D s j s 1 φ s j H ( p u τ ∑ j = 1 C i ∩ Θ φ s j D ~ j s j , s φ s j H + p d ∑ j = 1 C ~ j ∩ Θ α s j , s 1 K I τ + I τ ) − 1 Y 1 \hat{G}_{s_{j_{1}}}=\sqrt{p_{u} \tau} D_{s_{j} s_{1}} \varphi_{s_{j}}^{H}\left(p_{u} \tau \sum_{j=1}^{C_{i} \cap \Theta} \varphi_{s_{j}} \tilde{D}_{j s_{j}, s} \varphi_{s_{j}}^{H}+p_{d} \sum_{j=1}^{\tilde{C}_{j} \cap \Theta} \frac{\alpha_{s_{j}, s_{1}}}{K} I_{\tau}+I_{\tau}\right)^{-1} Y_{1} G^sj1=puτ Dsjs1φsjHpuτj=1CiΘφsjD~jsj,sφsjH+pdj=1C~jΘKαsj,s1Iτ+Iτ1Y1研究MMSE估计 G = H H ( H H H + σ 2 P ⋅ I ) − 1 G=\mathbf{H}^{H}\left(\mathbf{H H}^{H}+\frac{\sigma^{2}}{P} \cdot \mathbf{I}\right)^{-1} G=HH(HHH+Pσ2I)1 H H H来说,H到底是什么呢?如果是原始信道矩阵,那么已经知道H了还要做什么估计呢?
看有的资料说LS估计得到的 H ~ = X − 1 Y \tilde{H}=X^{-1}Y H~=X1Y,这样的估计是轻而易举就能想到的,我们利用已知信号和收到的信号进行信道估计。

有公式 H ^ = R H H ~ R H ~ H ~ − 1 H ~ \hat{H}=R_{H\tilde{H}}R_{\tilde{H}\tilde{H}}^{-1}\tilde{H} H^=RHH~RH~H~1H~其中 H ~ \tilde{H} H~是LS估计得到的结果


其实还是不是很懂。。。但是既然说是大尺度衰落,不如先做一个仿真试试? 思维放的开阔些,不一定非得局限在一篇论文上,多看多参考,能仿出来就行了

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
综上,只有一个伽马函数不知道。
在这里插入图片描述
万事俱备,准备开干。

  • β i l \beta_{il} βil代表什么含义

10-29
又到了这个老大难问题,先写吧先写吧,写了再说写了再说。
阴影衰落一般取值为多少

参考文献

https://www.cnblogs.com/Summerhack/p/11441161.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值