矩阵论
三省少年
路漫漫其修远兮,吾将上下而求索!
展开
-
矩阵论10,11,12作业
作业1第十讲2第十一讲没错,这三讲的内容很多,作业写起来计算量比较大1第十讲确定U的行,再由U的行来计算L的列,注意L列和U的组合没有这样的线性变换,不要想着消a21的时候,给第二行都减去a21,哪里来这样的初等行变换呢2第十一讲说到这个题就很生气了,书上的也太误导人了,本来以为要组成k矩阵单纯的计算系数数量是不够的,然而对角线上的元素全是1,这样元素的个数就够了,...原创 2019-12-17 20:22:09 · 388 阅读 · 0 评论 -
10矩阵的三角分解
矩阵的三角分解1Gauss消元法的矩阵形式2LU分解3其他三角分解3.1定义3.2算法(以Court分解为例)1Gauss消元法的矩阵形式对矩阵AAA每一列进行单独处理,左乘矩阵,使其变为上三角矩阵的样子。2LU分解A=A(0)=L1L2...Ln−1A(n−1)A=A^{(0)}=L_1L_2...L_{n-1}A^{(n-1)}A=A(0)=L1L2...Ln−1A(n−1),...原创 2019-12-15 09:56:52 · 1390 阅读 · 0 评论 -
矩阵论7,8,9作业
第七讲习题3.3-3若AAA为实反对称矩阵(AT=−A),(A^T=-A),(AT=−A),则eAe^AeA为正交矩阵习题3.3-4若AAA为hermite矩阵,则ejAe^{jA}ejA为正交矩阵习题3.3-5只有不算线性方程组才勉强复习的完这样子...原创 2019-12-11 17:33:08 · 1216 阅读 · 0 评论 -
9矩阵微分方程
1矩阵的微分和积分1.1微分定义对矩阵中每一个元素求微分1.2积分定义对矩阵中每一个元素求积分2一阶线性齐次常系数常微分方程组对于诸如dXdt=AX(t),\frac{dX}{dt}=AX(t),dtdX=AX(t),我们有解为etAc=etAX(0)e^{tA}c=e^{tA}X(0)etAc=etAX(0)可以求导验证结果的正确性。例:3一阶非齐次常系数常微分方程组...原创 2019-12-11 00:06:47 · 7093 阅读 · 0 评论 -
8矩阵函数的求法
1利用零化多项式求矩阵函数求出特征多项式,设其阶数为n列出g(λ)=∑i=0n−1ciλig(\lambda)=\sum_{i=0}^{n-1}c_i\lambda^ig(λ)=∑i=0n−1ciλi列出n个线性方程组g(λ)=f(λ),g(1)(λ)=f(1)(λ)...g(n−1)(λ)=f(n−1)(λ),g(\lambda)=f(\lambda),g^{(1)}(\lambd...原创 2019-12-10 23:15:31 · 2743 阅读 · 0 评论 -
7矩阵级数与矩阵函数
1矩阵序列1.1定义设有矩阵序列{A(k)}\{A^{(k)}\}{A(k)}k是标号,代表序列中第几个矩阵的意思当k→∞,A(k)=Ak\rightarrow \infty,A^{(k)}=Ak→∞,A(k)=A时,我们称之为矩阵序列收敛。1.2收敛矩阵序列的性质1.3收敛矩阵对于方阵A,当k→∞,Ak=0k\rightarrow \infty,A^k=0k→∞,Ak=0时,我们称之...原创 2019-12-10 22:45:19 · 3731 阅读 · 0 评论 -
矩阵论作业4,5,6讲
第四讲注意:正定矩阵的定义:当且仅当对于所有的非零实系数向量z,都有zTAz>0,z^TAz>0,zTAz>0,据此可证明内积运算的最后一点性质注意:施密特正交化的条件:必须是对基来做,故使用前需要先判断是不是基tobecontinued...原创 2019-12-08 21:53:16 · 417 阅读 · 0 评论 -
6Jordan标准型的变换与应用
Jordan标准型的变换与应用1.JordanJordanJordan标准型变换矩阵的求法2.Jordan标准形的幂及多项式1.JordanJordanJordan标准型变换矩阵的求法part1因为作业本没在,而word上的太过复杂,先放一放2.Jordan标准形的幂及多项式若A=P−1JP,A=P^{-1}JP,A=P−1JP,则f(A)=P−1f(J)Pf(A)=P^{-1}f...原创 2019-12-08 20:12:10 · 2141 阅读 · 0 评论 -
5对角化与Jordan标准型
对角化与Jordan标准型1正规矩阵1.1实对称矩阵与厄米矩阵1.2正交矩阵和酉矩阵1.3正交相似变换和酉相似变换1.4正规矩阵1.5相似矩阵具有相同的特征多项式→\rightarrow→相同的特征值、迹、行列式2酉对角化2.1SchurSchurSchur引理2.2定理3JordanJordanJordan标准型1正规矩阵1.1实对称矩阵与厄米矩阵实对称矩阵:实矩阵AAA AT=AA^T...原创 2019-12-08 11:52:50 · 3728 阅读 · 0 评论 -
4矩阵的对角化
矩阵的对角化1.特征征值与特征向量1.1定义1.2矩阵的迹与行列式1.3两个定理2矩阵对角化的充要条件3内积空间3.1酉空间3.2正交性3.3Gram-Schmidt正交化手续根据前面的来看,一点点复述固然效果好,但是太费时间,后面会加快速度,可能使用截图。1.特征征值与特征向量1.1定义对mmm阶方阵 ,若存在数λ\lambdaλ,及非零向量(列向量)xxx,使得Ax=λxAx=\lam...原创 2019-12-07 23:51:46 · 2146 阅读 · 0 评论 -
矩阵论作业1,2,3讲
第一讲1.1-3对于(2),我们需要进行八项性质的检验。1.1-5求习题3之(2)中线性空间的维数与基。???疑惑1.1-7这种坐标较为好求,从高维到低维逐次求解即可。答案出了问题,应该是(2,4,1)1.1-9意识啊意识,看到第二问到没有反应emmmm。解四元一次方程有点过分了。。。。。。第二讲1.1-11基础解系的求法1.1-12这个题做的还可以,...原创 2019-12-07 12:06:01 · 836 阅读 · 0 评论 -
3线性变换及其矩阵
线性变换及其矩阵1.定义及例子1.1定义1.2例子1.2.1例一1.2.1例二1.3性质1.4线性变换运算的一些定义2.线性变换的矩阵表示2.1定义2.2定理2.3相似矩阵3.矩阵的值域和核3.1定义3.2定理1.定义及例子1.1定义V是数域K上的线性空间,任意x∈V,x\in V,x∈V,若Tx=y∈V,Tx=y\in V,Tx=y∈V,则称TTT为V的一个变换,若是满足T(kx+ly)=...原创 2019-12-05 23:37:36 · 2507 阅读 · 0 评论 -
2线性子空间
线性子空间1.线性子空间的定义及性质1.1定义1.2性质1.2.1 VVV中o元素也是V1V_1V1中的o元素1.2.2 V1V_1V1中的负元素仍在V1V_1V1中1.3分类1.4生成子空间1.5基扩定理1.线性子空间的定义及性质1.1定义如果V1V_1V1中的元素满足:if x,y∈V1,x+y∈V1if\ x,y\in V_1,x+y\in V_1if x,...原创 2019-12-04 16:23:00 · 2692 阅读 · 0 评论 -
1线性空间
1.线性空间的定义tobecontinued原创 2019-12-03 23:39:15 · 660 阅读 · 0 评论 -
矩阵论16 17 18 19
16讲tobecontinued原创 2019-12-03 21:58:25 · 466 阅读 · 0 评论 -
19范数理论及其应用
范数理论及其应用1.向量范数1.向量范数原创 2019-12-02 16:34:20 · 250 阅读 · 0 评论 -
矩阵论作业13,14,15讲
(AH)+=(A+)H(A^H)^+=(A^+)^H(AH)+=(A+)H证明:{1}逆:AH(A+)HAH=(AA+A)H=AH\{1\}逆:A^H(A^+)^HA^H=(AA^+A)^H=A^H{1}逆:AH(A+)HAH=(AA+A)H=AH{2}逆:(A+)HAH(A+)H=(A+AA+)H=(A+)H\{2\}逆:(A^+)^HA^H(A^+)^H=(A^+AA^+)^H=(A^...原创 2019-11-19 21:48:06 · 1247 阅读 · 1 评论 -
16广义逆的计算及应用
广义逆的计算及应用1.由hermitehermitehermite标准形求{1}\{1\}{1}逆2.由满秩分解求广义逆1.由hermitehermitehermite标准形求{1}\{1\}{1}逆{1}逆即AXA=A,AXA=A,AXA=A,先想办法把A矩阵表示出来对任意矩阵,我们都有EA=B,BEA=B,BEA=B,B是HermiteHermiteHermite矩阵,现在再在B矩阵后乘...原创 2019-11-19 00:09:53 · 2739 阅读 · 0 评论 -
14Penrose广义逆(II)
Penrose广义逆(II)1.{1}逆与{1,2}逆\{1\}逆与\{1,2\}逆{1}逆与{1,2}逆2.{1}−\{1\}-{1}−逆与{1,2,3}−\{1,2,3\}-{1,2,3}−逆3.关于A+A^+A+1.{1}逆与{1,2}逆\{1\}逆与\{1,2\}逆{1}逆与{1,2}逆定理1:设Y,Z∈A{1},则YAZ∈A{1,2}Y,Z\in A\{1\},则YAZ\in A\{...原创 2019-11-16 23:35:26 · 313 阅读 · 0 评论 -
13penrose广义逆矩阵(I)
penrose广义逆矩阵I1.定义2.存在性的证明3.{1}逆的性质1.定义A∈Cn,Z∈Cn,A\in C^n,Z\in C^n,A∈Cn,Z∈Cn,若存在AZA=A,ZAZ=Z,(AZ)H=AZ,(ZA)H=ZA,AZA=A,ZAZ=Z,(AZ)^H=AZ,(ZA)^H=ZA,AZA=A,ZAZ=Z,(AZ)H=AZ,(ZA)H=ZA,则称ZZZ为AAA的moore−Penrosemoor...原创 2019-11-16 16:21:48 · 617 阅读 · 0 评论 -
15投影矩阵与Moore-Penrose逆(2)
1.定义在投影矩阵的基础上,L,ML,ML,M正交,即M=L⊥={y∣(y,x)=0,y∈Cn,x∈L}M=L^{\perp}=\{y|(y,x)=0,y\in C^n,x\in L\}M=L⊥={y∣(y,x)=0,y∈Cn,x∈L}。2.充要条件n阶方阵P为正交投影矩阵的充要条件是P为幂等厄米矩阵。证明:充分性:∵P2=P,PH=P→PR(P),N(P)=PR(P),N(PH)=P...原创 2019-11-12 17:09:07 · 1539 阅读 · 1 评论 -
15投影矩阵与Moore-Penrose逆(1)
投影矩阵与Moore-Penrose逆1.投影与投影矩阵1.1定义1.2充要条件1.2.1引理1.2.2定理1.投影与投影矩阵上课感觉自己听的还可以,下来算的时候就1.1定义设L,ML,ML,M是CnC^nCn的子空间并且有L+M=L⊕U=CnL+M=L\oplus U=C^nL+M=L⊕U=Cn,即∀x∈Cn,∃唯一y∈L,z∈M,使得x=y+z\forall x\in C^n,\ex...原创 2019-11-12 00:11:54 · 1431 阅读 · 0 评论 -
12满秩分解与奇异值分解(2)
酉对角分解与奇异值分解1.厄米矩阵的分解2.非奇异矩阵的酉对角矩阵的分解3.1.厄米矩阵的分解若AAA是厄米矩阵,那么一定可以找到一个酉矩阵uuu,使得UHAU=[λ1λ2⋱λn]=ΛU^HAU=\left[\begin{matrix} \lambda_1\\&\lambda2\\&&\ddots\\&&&\lambda_n \end{matr...原创 2019-11-09 00:00:55 · 353 阅读 · 0 评论 -
12满秩分解与奇异值分解(1)
满秩分解1.定义2.存在性定理3.hermite矩阵4.满秩分解的一种求法1.定义设矩阵A∈Crm×n(r>0)A\in C_r^{m\times n}(r>0)A∈Crm×n(r>0),若存在A=FG,F∈Crm×r,A∈Grr×nA=FG,F\in C_r^{m\times r},A\in G_r^{r\times n}A=FG,F∈Crm×r,A∈Grr×n则称其...原创 2019-11-08 11:28:38 · 1053 阅读 · 0 评论 -
11QR分解
QR分解1.定义2.定理1.定义矩阵A可以化为正交(酉)矩阵Q和上三角矩阵R的乘积,即A=QRA=QRA=QR,则称上式为矩阵的QRQRQR分解2.定理若AAA是一个nnn阶非奇异矩阵,则存在正交(酉)矩阵QQQ和上三角矩阵RRR使得A=QRA=QRA=QR,且除去相差一个对角元素绝对值全为1的对角因子外,上述分解唯一。证明:设A=[a1,a2...an]A=[a_1,a_2...a_...原创 2019-11-07 23:21:26 · 5303 阅读 · 3 评论 -
11矩阵的QR分解(1)
Givens矩阵与Givens变换1.引入1.引入原创 2019-10-28 17:21:31 · 5301 阅读 · 2 评论