coursera
三省少年
路漫漫其修远兮,吾将上下而求索!
展开
-
Optional Interview with Benny the Irish Polyglot abo---coursera课程Learn how to learn
这是一个访谈的视频,觉得访谈的对象说的很好,特此记录一下。H代表采访者,B代表被采访者H:本尼·刘易斯在21岁时只会一门英语 而且他在学校里语言成绩很差 说实话他一开始连学英语都费劲 因此他小时候不得不进行语言障碍矫正治疗 由此看来本尼没有学习语言的天赋 他有一个电子工程的学位 所以 当我从语言学转行到工程学时 本尼正好和我相反 2003年大学毕业后 本尼喜欢上了外国文化并开始讲外语 当他搬到...原创 2019-07-12 00:01:49 · 298 阅读 · 0 评论 -
谈谈Cost function and gradient的matlab写法
Cost function and gradient的matlab写法1.cost function2.gradient参考做ex2的时候,遇到了将cost function and gradient转化为matlab的问题。1.cost functionJ(θ)=1m∑i=1m[−y(i)log(hθ(x(i)))−(1−y(i))log(1−hθ(x(i)))]J(\theta)=...原创 2019-08-28 21:42:33 · 1095 阅读 · 0 评论 -
matlab之find函数
find函数的用法1.引入2.介绍3.进阶技巧4.参考1.引入今天做吴恩达机器学习的题目的时候,发现了一个之前没有接触过的函数,find函数!在这里对find函数做一个简单的用法介绍2.介绍返回向量或矩阵中不为0的元素的位置索引向量很明显不用做过多介绍,但是矩阵的find函数就很耐人寻味了。他是从上向下,从左至右依次编号,取出不为零的编号作为列向量的值(因为matlab存储矩阵是...原创 2019-08-26 19:55:50 · 6751 阅读 · 0 评论 -
Regularization:The problem of overfitting过度拟合问题----吴恩达机器学习
Regularization:The problem of overfittingdefinition of overfitting解决过度拟合参考definition of overfitting定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。判断方法一...原创 2019-08-22 23:03:27 · 233 阅读 · 0 评论 -
Regularized linear regression(正则化线性回归)----吴恩达机器学习
Regularized linear regression1.引入1.1梯度下降法1.2正规方程法1.引入接着上一篇文章的讲述,在上一篇文章中,我们将代价函数变为J(θ)=12m[∑i=1m(hθ(x)−y)2+λ∑i=1nθj2]J(\theta)=\frac{1}{2m}[\sum_{i=1}^m(h_{\theta}(x)-y)^2+\lambda \sum_{i=1}^n\theta_...原创 2019-08-23 15:42:42 · 416 阅读 · 0 评论 -
Multi-class classification:One-vs-all
Multi-class classification:One-vs-all引入如何确定预测函数?引入之前我们介绍的是二元分类问题,现在我们考虑多元分类问题,即:邮件分类:工作,朋友,家庭,爱好哪个胜率高:琪亚娜,芽衣,德丽莎,空之律者天气:晴天,阴天,雨天,雪天给这些类标上号:1,2,3,4如何确定预测函数?采取一种一对其余的办法具体来说就是,选取一种作为一类,将其余的类别...原创 2019-08-22 20:16:17 · 605 阅读 · 0 评论 -
高级优化方法fminunc----吴恩达机器学习
Advanced optimization1.本节课中的用法1.step1:写出J(θ)和θ的一阶导数2.调用fminunc2.举例3.更多用法参考1.本节课中的用法主要介绍fminunc的用法1.step1:写出J(θ)和θ的一阶导数写出J(θ)J(\theta)J(θ)的计算式写出∂∂θjJ(θj)\frac{\partial}{\partial{\theta_j}}J(\thet...原创 2019-08-22 17:45:39 · 814 阅读 · 0 评论 -
归类问题:简单的代价函数和梯度下降----吴恩达机器学习
Logistic Regression--Simplified Cost Function and Gradient Descent1.Cost fuction2.Gradient Descent1.Cost fuctionWe can compress our cost function’s two conditional cases into one case:Cost(hθ(x),y)=...原创 2019-08-22 16:59:03 · 212 阅读 · 0 评论 -
Regularized logistic regression(正则化逻辑回归)----吴恩达机器学习
Regularized logistic regression1.具体的实现1.1梯度下降法1.2高级优化算法2.后继1.具体的实现这一篇文章和上一篇文章类似,其实没有什么好讨论的,无非是做了以下几点改变:J(θ)J(\theta)J(θ)增加了正则项J(θ)J(\theta)J(θ)的导数增加了正则项我就不一一再像上篇文章一样详细展开讲了。直接附上ppt,大家看看就可以了。1....原创 2019-08-23 21:44:07 · 689 阅读 · 0 评论 -
A Test Checklist
A Test ChecklistWe’ve mentioned it earlier, but it’s worth repeating. Testing is itself an extraordinarily powerful learning experience. This means that the effort you put into test-taking, including...原创 2019-08-05 19:01:52 · 291 阅读 · 0 评论 -
gradientDescent----吴恩达机器学习作业
文章目录1.Question2.code3.Result1.QuestionNext, you will implement gradient descent in the le gradientDescent.m.The loop structure has been written for you, and you only need to supply the updates to θ...原创 2019-08-01 11:37:10 · 1064 阅读 · 0 评论 -
Computing the cost J(θ)----吴恩达机器学习作业
文章目录1.Question2.my code1.QuestionAs you perform gradient descent to learn minimize the cost function J(θ),it is helpful to monitor the convergence by computing the cost. In thissection, you will imp...原创 2019-07-31 16:16:23 · 686 阅读 · 0 评论 -
No Need for Genius Envy
所以即使是普通人也别灰心,要知道中庸之道才是这个世界的真理,你在一个方面得到了一些东西,肯定会在其他方面失去一些东西。原创 2019-08-02 22:51:40 · 148 阅读 · 0 评论 -
How to Become a Better Learner
原创 2019-08-02 21:58:40 · 409 阅读 · 0 评论 -
Harnessing Your Zombies to Help You
文章目录Engilish Versionthe part you should pay attentionfirst partsecond partthird partfourth part中文版你应该注意的部分Engilish Versionthe part you should pay attentionIn this video, we’re going to get into the...原创 2019-08-02 21:47:21 · 207 阅读 · 0 评论 -
Juggling Life and Learning
1.翻译对大多数人来说,学习涉及许多不同任务的复杂平衡。1.写任务清单大有好处对你来说,保持对你想要学习和完成的事情的看法的一个好方法是,每周写一次简短的任务清单,列在计划日志上。然后每天在你的计划表的另一页上,写下你可以合理完成的任务。试着在前一天晚上写下每天的任务清单。为什么是前一天晚上?研究表明,这能帮助你的潜意识处理清单上的任务,这样你就能知道如何完成它们。睡前写下清单,列出你的僵尸...原创 2019-07-29 22:48:17 · 387 阅读 · 0 评论 -
Zombies Everywhere----four elements of habits
Just imagine backing out of a driveway for the first time ever in your life. For some of you, that might seem like a pretty exciting proposition. The first time you might do this you would be in hyper...原创 2019-07-29 19:53:58 · 845 阅读 · 0 评论 -
Tackling Procrastination: It’s easier and more valuable than you think
Arsenic is incredibly toxic. For centuries until modern methods of detection were discovered, murderers found it to be a very popular substance. So you can imagine the shock at the 48th meeting of the...原创 2019-07-29 19:39:37 · 412 阅读 · 0 评论 -
logistic regression编程作业--sigmoid function,Cost function and gradient,Evaluating logistic regression
看着挺简单的,但是若是对matlab没有一定的熟悉程度,是无法顺利的做下这些问题的。下面给出这些问题的代码sigmoid functionfunction g = sigmoid(z)%SIGMOID Compute sigmoid function% g = SIGMOID(z) computes the sigmoid of z.% You need to return t...原创 2019-08-29 16:11:00 · 287 阅读 · 0 评论