1.原因
之前讨论的是在AWGN信道中的无码间干扰情况,现在我们要讨论在一般信道中的情况,通过之前的学习我们知道,信道相当于一个FIR滤波器,根据无码间干扰的原则,我们必须对信道进行均衡,避免产生码间干扰。
2.线性均衡器
2.1时域均衡
假设期望信号向量(即经过成形过的发送信号)为
d
(
k
)
d(k)
d(k),信道向量为
h
(
k
)
h(k)
h(k),那么接受信号为
r
(
k
)
=
∑
j
=
0
N
−
1
h
j
(
k
)
⋅
d
(
k
−
j
)
r(k)=\sum_{j=0}^{N-1}h_j(k)\cdot d(k-j)
r(k)=j=0∑N−1hj(k)⋅d(k−j)
向量形式为
r
(
k
)
=
h
T
(
k
)
⋅
d
(
k
)
r(k)=h^T(k)\cdot d(k)
r(k)=hT(k)⋅d(k)
其中,k代表时刻
展开为
r
(
k
)
=
[
h
0
(
k
)
h
1
(
k
)
⋯
h
N
−
1
(
k
)
]
⋅
[
d
(
k
)
d
(
k
−
1
)
⋮
d
(
k
−
N
+
1
)
]
r(k)=\left[ \begin{matrix} h_0(k) & h_1(k) &\cdots &h_{N-1}(k) \\ \end{matrix} \right] \cdot \left[ \begin{matrix} d(k)\\d(k-1)\\ \vdots \\ d(k-N+1) \end{matrix} \right]
r(k)=[h0(k)h1(k)⋯hN−1(k)]⋅⎣⎢⎢⎢⎡d(k)d(k−1)⋮d(k−N+1)⎦⎥⎥⎥⎤
加上均衡器后,输出为
x
(
k
)
=
b
T
(
k
)
⋅
r
(
k
)
x(k)=b^T(k)\cdot r(k)
x(k)=bT(k)⋅r(k)
其中
b
(
k
)
b(k)
b(k)为均衡器,我们应该怎么设计均衡器呢??
2.2频域均衡
结合奈奎斯特定率,我们知道频域响应应该为一个常数,即:
H
T
(
f
)
⋅
H
R
(
f
)
⋅
C
(
f
)
⋅
B
(
f
)
=
常
数
H_T(f)\cdot H_R(f) \cdot C(f)\cdot B(f)=常数
HT(f)⋅HR(f)⋅C(f)⋅B(f)=常数又因为
H
T
(
f
)
⋅
C
(
f
)
=
常
数
H_T(f)\cdot C(f)=常数
HT(f)⋅C(f)=常数,所以
H
R
(
f
)
⋅
B
(
f
)
=
常
数
H_R(f)\cdot B(f)=常数
HR(f)⋅B(f)=常数其中
H
R
(
f
)
H_R(f)
HR(f)是信道向量,
B
(
f
)
B(f)
B(f)是均衡器向量
3.均衡器
3.1无限长迫零(Zero force\ZF)均衡器
直接由上式,可得
B
(
f
)
=
1
H
(
z
)
B(f)=\frac{1}{H(z)}
B(f)=H(z)1因为
H
(
z
)
H(z)
H(z)是FIR滤波器,所以
B
(
f
)
B(f)
B(f)是IIR滤波器。
但是,IIR滤波器缺点是很多的,比如不稳定,相位不线性,复杂等缺点,因此,我们需要FIR滤波器
3.2有限长时域迫零(ZF)均衡器
将无限长迫零均衡器截断,使之成为FIR滤波器,但是会残余ISI(码间干扰)。
有限长时域迫零(ZF)均衡器有什么缺点呢?会放大噪声,因此,在信噪比大的时候,有限长时域迫零(ZF)均衡器是可以接受的,但是信噪比一旦变小,有限长时域迫零(ZF)均衡器性能就会很差。
红色的有波动的为信号频域响应,红色的直线为噪声,黑色的为补偿,可以发现在补齐信号的同时放大了噪声
3.3无限长MSE均衡器
4.性能比较
有以下结果:
- MLSE(最大似然序列估计)的性能接近AWGN信道,就像没有多径的情况一样。
- viterbi(维特比)比前面两个性能差一些。
- ZF均衡器在信噪比高的时候性能好,在信噪比低的时候性能差。
- MSE在信噪比高的时候性能比ZF差,在信噪比低的时候性能比ZF好。
- 为什么MSE会和viterbi有差距呢??
因为MSE只取了众多信号中的一个,而viterbi是都会计算在其中的。
欢迎交流!!