均衡器--时域均衡,频域均衡,无限长迫零(Zero force\ZF)均衡器,有限长时域迫零(ZF)均衡器,无限长MSE均衡器

1.原因

之前讨论的是在AWGN信道中的无码间干扰情况,现在我们要讨论在一般信道中的情况,通过之前的学习我们知道,信道相当于一个FIR滤波器,根据无码间干扰的原则,我们必须对信道进行均衡,避免产生码间干扰

2.线性均衡器

2.1时域均衡

假设期望信号向量(即经过成形过的发送信号)为 d ( k ) d(k) d(k),信道向量为 h ( k ) h(k) h(k),那么接受信号为 r ( k ) = ∑ j = 0 N − 1 h j ( k ) ⋅ d ( k − j ) r(k)=\sum_{j=0}^{N-1}h_j(k)\cdot d(k-j) r(k)=j=0N1hj(k)d(kj)
向量形式为 r ( k ) = h T ( k ) ⋅ d ( k ) r(k)=h^T(k)\cdot d(k) r(k)=hT(k)d(k)
其中,k代表时刻
展开为
r ( k ) = [ h 0 ( k ) h 1 ( k ) ⋯ h N − 1 ( k ) ] ⋅ [ d ( k ) d ( k − 1 ) ⋮ d ( k − N + 1 ) ] r(k)=\left[ \begin{matrix} h_0(k) & h_1(k) &\cdots &h_{N-1}(k) \\ \end{matrix} \right] \cdot \left[ \begin{matrix} d(k)\\d(k-1)\\ \vdots \\ d(k-N+1) \end{matrix} \right] r(k)=[h0(k)h1(k)hN1(k)]d(k)d(k1)d(kN+1)
加上均衡器后,输出为 x ( k ) = b T ( k ) ⋅ r ( k ) x(k)=b^T(k)\cdot r(k) x(k)=bT(k)r(k)
其中 b ( k ) b(k) b(k)为均衡器,我们应该怎么设计均衡器呢??

2.2频域均衡

在这里插入图片描述
结合奈奎斯特定率,我们知道频域响应应该为一个常数,即:
H T ( f ) ⋅ H R ( f ) ⋅ C ( f ) ⋅ B ( f ) = 常 数 H_T(f)\cdot H_R(f) \cdot C(f)\cdot B(f)=常数 HT(f)HR(f)C(f)B(f)=又因为 H T ( f ) ⋅ C ( f ) = 常 数 H_T(f)\cdot C(f)=常数 HT(f)C(f)=,所以 H R ( f ) ⋅ B ( f ) = 常 数 H_R(f)\cdot B(f)=常数 HR(f)B(f)=其中 H R ( f ) H_R(f) HR(f)是信道向量, B ( f ) B(f) B(f)是均衡器向量

3.均衡器

3.1无限长迫零(Zero force\ZF)均衡器

直接由上式,可得 B ( f ) = 1 H ( z ) B(f)=\frac{1}{H(z)} B(f)=H(z)1因为 H ( z ) H(z) H(z)是FIR滤波器,所以 B ( f ) B(f) B(f)IIR滤波器
但是,IIR滤波器缺点是很多的,比如不稳定,相位不线性,复杂等缺点,因此,我们需要FIR滤波器

3.2有限长时域迫零(ZF)均衡器

将无限长迫零均衡器截断,使之成为FIR滤波器,但是会残余ISI(码间干扰)。
有限长时域迫零(ZF)均衡器有什么缺点呢?会放大噪声,因此,在信噪比大的时候,有限长时域迫零(ZF)均衡器是可以接受的,但是信噪比一旦变小,有限长时域迫零(ZF)均衡器性能就会很差。
在这里插入图片描述
红色的有波动的为信号频域响应,红色的直线为噪声,黑色的为补偿,可以发现在补齐信号的同时放大了噪声

3.3无限长MSE均衡器

在这里插入图片描述

4.性能比较

在这里插入图片描述
有以下结果:

  • MLSE(最大似然序列估计)的性能接近AWGN信道,就像没有多径的情况一样。
  • viterbi(维特比)比前面两个性能差一些。
  • ZF均衡器在信噪比高的时候性能好,在信噪比低的时候性能差。
  • MSE在信噪比高的时候性能比ZF差,在信噪比低的时候性能比ZF好。
  • 为什么MSE会和viterbi有差距呢??
    因为MSE只取了众多信号中的一个,而viterbi是都会计算在其中的。

欢迎交流!!
在这里插入图片描述

随着近年来数字通信技术的发展,信号中经常混有各种复杂成分,所以很多信号分析都是基于滤波器而进行的,而数字滤波器是通过数值运算实现滤波,具有处理精度高、稳定、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。对于基带信号传输来说,自适应时域均衡器越来越得到重视,它是以有限冲激响应(FIR)数字滤波器为基础,提出的一种可以适应当前环境的一种滤波器,其所用的存储单元较少,效率高,精度高,而且能够保留一些模拟滤波器的优良特性,因此应用很广。Matlab软件以矩阵运算为基础,把计算、可视化及程序设计有机融合到交互式工作环境中,并且为数字滤波的研究和应用提供了一个直观、高效、便捷的利器。尤其是Matlab中的信号处理工具箱使各个领域的研究人员可以直观方便地进行科学研究与工程应用。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的几种实现结构, 然后重点介绍了两种自适应滤波算法最小均方误差(LMS)算法和递推最小二乘(RLS)算法,并对LMS算法和RLS算法性能进行了详细的分析。其中LMS算法结构简单,鲁棒性强,但其收敛速度很慢,而RLS收敛速度快,但其运算量很大。最后本文对基于LMS算法和RLS算法的自适应滤波器进行MATLAB仿真分析。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值