Birth-Death process 生灭过程

1.定义

假设系统有一状态集 E = 0 , 1 , 2... K E={0,1,2...K} E=0,1,2...K,令 N ( t ) N(t) N(t)表示系统在 t t t时刻所处的状态,则有以下结论:

p i , i + 1 ( Δ t ) = P ( N ( t + Δ t ) = i + 1 ∣ N ( t ) = i ) = λ i Δ t + o ( Δ t ) p_{i,i+1}(\Delta t)=P(N(t+\Delta t)=i+1|N(t)=i)=\lambda_i\Delta t+o(\Delta t) pi,i+1(Δt)=P(N(t+Δt)=i+1N(t)=i)=λiΔt+o(Δt)
p i , i − 1 ( Δ t ) = P ( N ( t + Δ t ) = i − 1 ∣ N ( t ) = i ) = μ i Δ t + o ( Δ t ) p_{i,i-1}(\Delta t)=P(N(t+\Delta t)=i-1|N(t)=i)=\mu_i\Delta t+o(\Delta t) pi,i1(Δt)=P(N(t+Δt)=i1N(t)=i)=μiΔt+o(Δt)
p i , j ( Δ t ) = P ( N ( t + Δ t ) = j ∣ N ( t ) = i ) = o ( Δ t ) ∣ i − j ∣ > 2 p_{i,j}(\Delta t)=P(N(t+\Delta t)=j|N(t)=i)=o(\Delta t) |i-j|>2 pi,j(Δt)=P(N(t+Δt)=jN(t)=i)=o(Δt)ij>2

其中, λ i > 0 , i = 0 , 1 , 2..... K − 1 , μ i > 0 , i = 1 , 2 , 3.... K \lambda_i>0,i=0,1,2.....K-1,\mu_i>0,i=1,2,3....K λi>0,i=0,1,2.....K1,μi>0,i=1,2,3....K,均为常数,则称随机过程 N ( t ) , t > 0 {N(t),t>0} N(t),t>0为有限状态 E = 0 , 1 , 2... K E={0,1,2...K} E=0,1,2...K上的生灭过程。生灭过程是一个特殊的马尔科夫过程。
在这里插入图片描述

2.平稳分布

p j ( t ) = P ( N ( t ) = j ) , j ∈ E p_j(t)=P(N(t)=j),j\in E pj(t)=P(N(t)=j),jE,那么由全概率公式,有:
p j ( t ) = p j ( t ) [ 1 − λ i Δ t − μ i Δ t − o ( Δ t ) ] + p j − 1 ( t ) [ λ i Δ t + o ( Δ t ) ] + p j + 1 ( t ) [ μ i Δ t + o ( Δ t ) ] + ∑ i − j ≥ 2 p i ( t ) o ( Δ t ) p_j(t)=p_j(t)[1-\lambda_i\Delta t-\mu_i\Delta t-o(\Delta t)]+p_{j-1}(t)[\lambda_i\Delta t+o(\Delta t)]+p_{j+1}(t)[\mu_i\Delta t+o(\Delta t)]+\sum_{i-j\ge 2} p_i(t)o(\Delta t) pj(t)=pj(t)[1λiΔtμiΔto(Δt)]+pj1(t)[λiΔt+o(Δt)]+pj+1(t)[μiΔt+o(Δt)]+ij2pi(t)o(Δt)
       = p j ( t ) [ 1 − λ i Δ t − μ i Δ t ] + p j − 1 ( t ) [ λ i Δ t ] + p j + 1 ( t ) [ μ i Δ t ] =p_j(t)[1-\lambda_i\Delta t-\mu_i\Delta t]+p_{j-1}(t)[\lambda_i\Delta t]+p_{j+1}(t)[\mu_i\Delta t] =pj(t)[1λiΔtμiΔt]+pj1(t)[λiΔt]+pj+1(t)[μiΔt]
p j ( t ) = lim ⁡ t → + ∞ p j ( t ) p_j(t)=\lim_{t\rightarrow+\infty}p_j(t) pj(t)=limt+pj(t), { p j , j = 0 , 1 , . . . . K p_j,j=0,1,....K pj,j=0,1,....K}存在,与初始条件无关,且 p j > 0 , ∑ j = 0 j = K p j = 1 p_j>0,\sum_{j=0}^{j=K}p_j=1 pj>0,j=0j=Kpj=1,即{ p j , j = 0 , 1 , . . . . K p_j,j=0,1,....K pj,j=0,1,....K}为平稳分布。

3.性质

  • p j P j , j + 1 = p j + 1 P j + 1 , j p_jP_{j,j+1}=p_{j+1}P_{j+1,j} pjPj,j+1=pj+1Pj+1,j
  • 求各个状态的概率
    结合 ∑ j = 0 j = K p j = 1 \sum_{j=0}^{j=K}p_j=1 j=0j=Kpj=1可知, p j = λ 0 λ 1 . . . λ K − 1 μ 1 μ 2 . . . μ K p 0 , p_j=\frac{\lambda_0\lambda_1...\lambda_{K-1}}{\mu_1\mu_2...\mu_K}p_0, pj=μ1μ2...μKλ0λ1...λK1p0,其中
    p 0 = 1 1 + ∑ i = 0 i = K λ 0 λ 1 . . . λ i − 1 μ 1 μ 2 . . . μ i p_0=\frac{1}{1+\sum_{i=0}^{i=K}\frac{\lambda_0\lambda_1...\lambda_{i-1}}{\mu_1\mu_2...\mu_i}} p0=1+i=0i=Kμ1μ2...μiλ0λ1...λi11

4.例子

  • 2-state birth-death process
    在这里插入图片描述
    { p 0 + p 1 = 1 p 0 α = p 1 β ⇒ p 0 = β α + β , p 1 = α α + β \begin{cases} & p_0+p_1=1\\ & p_0\alpha=p_1\beta \end{cases}\Rightarrow p_0=\frac{\beta}{\alpha+\beta},p_1=\frac{\alpha}{\alpha+\beta} {p0+p1=1p0α=p1βp0=α+ββ,p1=α+βα
  • 例二
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    M是生成矩阵,将对应的向量相乘,我们可以得到
    p 0 ∗ − N α + p 1 β = 0 , p 0 ∗ N α − p 1 [ β + ( N − 1 ) α ] + p 3 2 β = 0 p_0*-N\alpha+p_1\beta=0,p_0*N\alpha-p_1[\beta+(N-1)\alpha]+p_32\beta=0 p0Nα+p1β=0,p0Nαp1[β+(N1)α]+p32β=0
    每个矩阵都是对应状态的平衡方程。
    在这里插入图片描述
    平衡方程。
  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值