考研第5天-线性代数-向量组的线性相关性

这篇博客探讨了线性代数中的核心概念,包括向量组的线性相关性和无关性,矩阵的秩,以及如何判断向量能否由其他向量线性表示。通过定理和推论,阐述了向量组的秩与其生成的向量空间的关系,以及这些理论在解线性方程组中的应用。还提及了最大无关组的定义和齐次线性方程组解的性质。
摘要由CSDN通过智能技术生成

1、一些名词:

向量组,向量组A的一个线性组合,向量组等价,线性相关,线性无关,向量组的秩,向量空间,解空间,向量组生成的向量空间,向量空间的基,向量空间的维数,r维向量空间

2、[定理1]向量b能由向量组A线性表示的充要条件是R(A)=R(A,b)。

3、若A与B列等价,则A的列向量组与B的列向量组等价;若A与B行等价,则A的行向量组与B的行向量组等价。

4、[定理2]向量组B能由向量组A线性表示的充要条件是矩阵A的秩等于矩阵[A,B]的秩,即R(A)=R(A,B)。

[推论]向量组A与向量组B等价的充要条件是R(A)=R(A,B)。

5、[定理3]设向量组B能由向量组A线性表示,则R(B)<=R(A)。

6、向量组线性相关的意义:当方程组中有某个方程是其余方程的线性组合时,这个方程就是多余的,这时,方程组是线性相关的;当方程组没有多余方程的时候,就称该方程组线性无关。

7、[定理4]向量组[a1,a2,a3,a4...,an]线性相关的充要条件是他所构成的矩阵A的秩R(A)<n;向量组[a1,a2,a3,...,an]线性无关的充要条件是A的秩R(A)=n。

8、[定理5]

(1)如果向量组A:a1,a2,...,an线性相关,则向量组B&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值