1、一些名词:
向量组,向量组A的一个线性组合,向量组等价,线性相关,线性无关,向量组的秩,向量空间,解空间,向量组生成的向量空间,向量空间的基,向量空间的维数,r维向量空间
2、[定理1]向量b能由向量组A线性表示的充要条件是R(A)=R(A,b)。
3、若A与B列等价,则A的列向量组与B的列向量组等价;若A与B行等价,则A的行向量组与B的行向量组等价。
4、[定理2]向量组B能由向量组A线性表示的充要条件是矩阵A的秩等于矩阵[A,B]的秩,即R(A)=R(A,B)。
[推论]向量组A与向量组B等价的充要条件是R(A)=R(A,B)。
5、[定理3]设向量组B能由向量组A线性表示,则R(B)<=R(A)。
6、向量组线性相关的意义:当方程组中有某个方程是其余方程的线性组合时,这个方程就是多余的,这时,方程组是线性相关的;当方程组没有多余方程的时候,就称该方程组线性无关。
7、[定理4]向量组[a1,a2,a3,a4...,an]线性相关的充要条件是他所构成的矩阵A的秩R(A)<n;向量组[a1,a2,a3,...,an]线性无关的充要条件是A的秩R(A)=n。
8、[定理5]
(1)如果向量组A:a1,a2,...,an线性相关,则向量组B&