国家提出数据要素化以来,数据资产入表已成为企业实现数据价值的一大方向,企业数据资产入表有何意义呢?又该如何进行数据资产入表的操作呢?
企业数据资产入表对于企业的数字化转型和数据驱动业务具有重要意义: 可以提高数据资产可发现性和可访问性,数据资产入表能够发现企业内部分散的数据资产,建立统一的元数据库,让数据资产更容易被发现和访问,提高数据复用率,避免重复采购和建设。增强数据资产管理和治理能力,入表后可以全面掌握数据资产的详细信息,包括数据类型、格式、质量、血缘等,有利于企业制定数据标准和策略,对数据资产进行统一管理和有效治理。保障数据安全性和合规性,数据入表可记录敏感级别、访问权限等信息,加强敏感数据监控和保护,满足法律法规等合规要求,降低数据安全风险。挖掘数据资产价值,通过数据资产入表可以发现隐藏的高价值数据,激发数据对业务创新和决策的支撑作用,助力企业实现数据驱动和数字化转型。
赋能新兴技术应用,数据入表为人工智能、大数据、云计算等新技术在企业内部的应用提供了必要的数据支撑和元数据标准,推动新技术在企业场景中落地。优化数据资源配置,统一的数据资产视图有利于企业优化数据资源配置,减少资源浪费,提高资源利用效率。我们通过一张图了解数据资产入表的全流程。
本文内容整理自《企业数据资产入表操作指引》。如图所示,企业数据资产入表目前已经有着健全的法规政策依据,也有着巨大的需求。但是数据资产入表也有着巨大的挑战,数据资产入表涉及业务,数据,技术,会计等各方共同参与,难度巨大。
那么,数据资产入表该如何操作呢?如图所示,数据资产入表有六个步骤。 首先是数据治理,就是给企业里的数据制定统一的规范和流程,确保数据质量好、安全没问题,符合法律法规要求,让大家用数据都有基本的保证。然后是数据资产评估,就是去识别和评估企业里哪些数据是有价值的,质量如何,有什么风险等等,好让企业重视并好好利用那些高价值数据。第三是数据确权,就是明确哪些数据资产归谁所有,谁有使用权和处置权,避免将来可能出现的数据权属纠纷。第四是数据交易,就是企业内部或者跟外部建立起数据交易机制,让数据资产可以在不同主体之间流通和交易,提高数据利用率。 第五是数据成本与分摊,要算清楚企业获取和管理数据的全部成本,并合理分摊给不同的使用方,提高成本透明度和使用效率。最后是数据披露,就是按照规定及时披露企业拥有的数据资产信息,让监管部门和公众了解情况,保证透明度,维护企业声誉。 该如何去学习数据资产入表相关知识呢?数据资产入表涉及多个方面,不同的角色需要学习重点有所不同: 对于技术人员来说,需要了解数据资产生命周期管理,包括获取、管理、使用、监控和销毁数据。学习数据建模、数据标准化、元数据管理等技术。熟悉数据质量评估、数据集成、数据仓库和数据湖等技术。掌握数据治理、数据安全和隐私保护的最佳实践。对于业务人员,需要理解企业数据资产的价值和重要性。学习数据资产的分类、定义和识别方法。熟悉业务流程和数据生命周期的关系。了解数据资产如何支持业务决策和运营。对于财务人员,需要了解数据资产的财务价值和会计处理规则。学习数据资产的资本化、折旧和减值测试方法。熟悉数据资产交易的财务影响和税收处理。对于法律人员,需要掌握数据资产相关的法律法规和合规要求。学习数据所有权、使用权和许可协议相关知识,了解数据隐私和数据安全的法律风险防范。所有数据相关人员都需要培养跨职能的数据素养,通过内部培训、外部培训、实践项目等多种方式来系统学习。同时也需要建立数据资产管理的组织架构和政策制度,来指导和规范数据资产入表的全流程。
更多数据治理、数据要素、数据资产相关知识与咨询,请关注大数据流动。