半小时教会萌新初步运行yolov9

怎样运行yolo v9

简介

yolo v9 是最新发布的yolo模型,一句话总结:比前代更好,更快,更强。

本文旨在用最简单的方法吧yolov9的代码跑起来,因此不涉及训练部分,仅教会大家怎么使用yolov9的官方权重进行图像检测。

准备

某些网址可能无法打开,建议全程加速器环境下载

  1. git工具 Git - Downloading Package (git-scm.com)
  2. miniconda 虚拟环境软件,也可以使用anaconda , 只是miniconda 更加轻量化。[Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror](https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/

注意下载软件要选择合适的版本,主要是x86和arm版本软件记得区分,一般intel的cpu使用x64版本

image-20240606180754233

git安装(可选)

1.双击安装包安装

image-20240606180844600

2.一直点击下一步

image-20240606181024808

3.验证一下安装成功没有,windows+R键,左下角输入cmd,进入命令行

image-20240606181149124

在命令行中输入git -v,显示出git版本号就是安装成功:

image-20240606181247738

miniconda安装

双击安装包安装,一直点击下一步,不过我们需要记住安装路径。后面需要用到。

image-20240606182526842

安装可能需要一段时间:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

image-20240606182703322

把上图两个钩取消然后点击finish即可。

安装完成之后需要配置环境变量,在windows搜索栏搜索环境变量

image-20240606182844704

点进去选择image-20240606182927476

点进去,新建3个环境变量:

C:\Users\XIANR\miniconda3

C:\Users\XIANR\miniconda3\Library\bin

C:\Users\XIANR\miniconda3\Scripts

注意,上面三个变量中的C:\Users\XIANR\miniconda3自行替换为你的安装路径,如,小明的安装路径在D:\miniconda3,那小明的三个环境变量就是:

D:\miniconda3

D:\miniconda3\Library\bin

D:\miniconda3\Scripts

配置完成后如下:

image-20240606183449970

点击三次确定保存

然后windows+r打开CMD,输入conda -V出现Conda版本号即为安装成功

image-20240606183647866

新建python环境

在cmd中 输入conda create -n yolo python=3.9,等待一段时间后,出现下面界面,输入y

image-20240606184033184

注意:如果下载缓慢请开加速器

出现如下提示即创建环境成功:

image-20240606184146890

然后输入 conda init关掉cmd再次打开,输入conda activate yolo,当左边出现yolo字样的时候,我们的python环境就创建成功了。

image-20240606184327785

yolo源码下载

如果你在第一步安装了git

新建一个文件夹用来存放源码,在文件管理器的地址栏输入CMD,回车,会在当前建立的文件夹下打开CMD

image-20240606184605628

image-20240606184724543

输入git clone https://github.com/WongKinYiu/yolov9.git

image-20240606184939785

此时在文件夹中已经出现了yolov9的代码

image-20240606185052364

如果你没安装git

在 https://github.com/WongKinYiu/yolov9 中自行下载源码后解压即可。

python包安装

进入源码文件夹,在地址栏输入cmd进入命令行

image-20240606185324091

在命令行输入 conda activate yolo

image-20240606185449273

如果你有加速器

输入命令 pip install -r requirements.txt

如果你没加速器

输入命令 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

此时会自动下载依赖并安装,可能需要等待很长时间。

image-20240606185647908

当出现successfuly 的时候,就成功了!如果你报错了,请重新来一遍,这是配环境的过程中难以避免的。

image-20240606190249283

下载预训练权重包

在 https://github.com/WongKinYiu/yolov9/releases 里下载预训练模型,随便挑一个pt为后缀的,下载完后,改名为yolo.pt,放到代码目录下

image-20240606191130927

运行

恭喜你来到这一步,接下来就是激动的运行时间了。

我们首先可以找几张图片放在yolo的data/images文件夹中

image-20240606190420581

回到yolo代码主目录,打开cmd.

然后在命令行中输入 python detect.py 等待一会,出现下图结果即运行成功

image-20240606191333147

图中显示我们的结果在 runs\detect\exp2文件夹中,打开文件夹即可看到结果:

image-20240606191515123

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值