怎样运行yolo v9
简介
yolo v9 是最新发布的yolo模型,一句话总结:比前代更好,更快,更强。
本文旨在用最简单的方法吧yolov9的代码跑起来,因此不涉及训练部分,仅教会大家怎么使用yolov9的官方权重进行图像检测。
准备
某些网址可能无法打开,建议全程加速器环境下载
- git工具 Git - Downloading Package (git-scm.com)
- miniconda 虚拟环境软件,也可以使用anaconda , 只是miniconda 更加轻量化。[Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror](https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/
注意下载软件要选择合适的版本,主要是x86和arm版本软件记得区分,一般intel的cpu使用x64版本
git安装(可选)
1.双击安装包安装
2.一直点击下一步
3.验证一下安装成功没有,windows+R键,左下角输入cmd,进入命令行
在命令行中输入git -v
,显示出git版本号就是安装成功:
miniconda安装
双击安装包安装,一直点击下一步,不过我们需要记住安装路径。后面需要用到。
安装可能需要一段时间:
把上图两个钩取消然后点击finish即可。
安装完成之后需要配置环境变量,在windows搜索栏搜索环境变量
点进去选择
点进去,新建3个环境变量:
C:\Users\XIANR\miniconda3
C:\Users\XIANR\miniconda3\Library\bin
C:\Users\XIANR\miniconda3\Scripts
注意,上面三个变量中的C:\Users\XIANR\miniconda3
自行替换为你的安装路径,如,小明的安装路径在D:\miniconda3,那小明的三个环境变量就是:
D:\miniconda3
D:\miniconda3\Library\bin
D:\miniconda3\Scripts
配置完成后如下:
点击三次确定保存
然后windows+r打开CMD,输入conda -V
出现Conda版本号即为安装成功
新建python环境
在cmd中 输入conda create -n yolo python=3.9
,等待一段时间后,出现下面界面,输入y
注意:如果下载缓慢请开加速器
出现如下提示即创建环境成功:
然后输入 conda init
关掉cmd再次打开,输入conda activate yolo
,当左边出现yolo字样的时候,我们的python环境就创建成功了。
yolo源码下载
如果你在第一步安装了git
新建一个文件夹用来存放源码,在文件管理器的地址栏输入CMD,回车,会在当前建立的文件夹下打开CMD
输入git clone https://github.com/WongKinYiu/yolov9.git
此时在文件夹中已经出现了yolov9的代码
如果你没安装git
在 https://github.com/WongKinYiu/yolov9 中自行下载源码后解压即可。
python包安装
进入源码文件夹,在地址栏输入cmd进入命令行
在命令行输入 conda activate yolo
如果你有加速器
输入命令 pip install -r requirements.txt
如果你没加速器
输入命令 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
此时会自动下载依赖并安装,可能需要等待很长时间。
当出现successfuly 的时候,就成功了!如果你报错了,请重新来一遍,这是配环境的过程中难以避免的。
下载预训练权重包
在 https://github.com/WongKinYiu/yolov9/releases 里下载预训练模型,随便挑一个pt为后缀的,下载完后,改名为yolo.pt,放到代码目录下
运行
恭喜你来到这一步,接下来就是激动的运行时间了。
我们首先可以找几张图片放在yolo的data/images文件夹中
回到yolo代码主目录,打开cmd.
然后在命令行中输入 python detect.py
等待一会,出现下图结果即运行成功
图中显示我们的结果在 runs\detect\exp2
文件夹中,打开文件夹即可看到结果: