运行python时出现:
即便是GPU的内存有16GiB,运行依旧报错。网上许多方法是修改batch_size,但将batch_size的值修改到最小,给pytorch预留的内存还是14GiB多,或者是13GiB。总之是内存不够。想着自己GPU的内存虽然小,处理太大的数据集不太现实,但python就跑不起来了吗?即便是训练一两个也行啊。
将batch_size修改为合适的值(根据自己的GPU内存),若是还是出现CUDA out of memory,可能是输入的图片数量太大,导致GPU内存不够,从而使工程中断。
我是将自己输入的图片的数量减少,修改yml文件中的配置。
蓝框是之前的配置,设置后出现CUDA out of memory。修改成红框中的内容后,在调整batch_size后,程序运行成功,训练正常。
Tips:
可能每个人设置的地方不一样,我的是yml文件,需要自己找到正确的位置进行修改。