机器人路径规划_人工蜂群算法

机器人路径规划_人工蜂群算法

原理


ABC(Artificial BeesColony)算法最先由Basturk等人提出并应用于函数优化问题,蜂群采蜜行为与函数优化问题对应关系如表1所示。由表1可知,ABC算法中,蜜源的位置对应函数优化问题的一个可行解,而蜜源的收益度(蜜量)对应问题的适应度(函数值),寻找并采集蜜源的速度对应问题求解的速度。算法中参数描述为:NE 为采蜜蜂数量;NO 为跟随蜂数量;NS 为蜜蜂总数;Q 为解空间维数;MCN 为最大循环迭代数;Limit 为采蜜蜂持续保持不变代数;Cycle 为当前迭代数。

初始化时,随机生成NS 个可行解,计算函数值,将排名前50%的解作为蜜源位置,即前50%为采蜜蜂,后50%为跟随蜂。蜜源个数始终是NE 个,不会随着迭代的进行而改变。具体随机产生的可行解为

式中 j∈{1,2,···,Q }为Q维解向量的某个分量。

采蜜蜂记住自己以前的最优解,在采蜜源附近邻域搜索,搜索公式为

式中j∈{1,2,···,Q},k∈{1,···,i-1,i+1,···,EN},即k 随机生成,且k≠ ,  为[-1,1]之间的随机数,随着迭代次数的累加, 之间的距离缩小,搜索的空间也缩小,也即搜索的步长缩小,动态的调整步长,有助于算法提高精度,并最终获得最优解,非常接近最优解的次优解。

采蜜蜂采用贪婪准则,比较记忆中的最优解和邻域搜索解,当搜索解优于记忆最优解时,替换记忆解;反之,保持不变。在所有的采蜜蜂完成邻域搜索后,采蜜蜂跳摆尾舞与跟随蜂共享蜜源信息。跟随蜂根据蜜源信息以一定概率选择采蜜源,蜜量大的采蜜蜂吸引跟随蜂的概率大于蜜量小的采蜜蜂。同样,跟随蜂在采蜜源附近邻域搜索,采用贪婪准则,比较跟随蜂搜索解与原采蜜蜂的解,当搜索解优于原采蜜蜂的解时,替换原采蜜蜂的解,完成角色互换;反之,保持不变


人工蜂群算法(Artificial Bee Colony, ABC)是一种基于蜜蜂觅食行为的启发式优化算法,可以用于路径规划问题。 在路径规划中,人工蜂群算法可以被用来找到最优或接近最优的路径。下面是一种基本的应用步骤: 1. 定义问题:明确起点、终点以及路径的限制条件,比如避免障碍物、最短路径等。 2. 初始化蜂群:创建一群蜜蜂,每只蜜蜂代表一条路径。初始时,可以随机生成一些路径作为初始解。 3. 评估路径:根据定义的问题和评估函数,计算每条路径的适应度值。适应度值可以表示路径的优劣程度,比如距离、时间等。 4. 蜜蜂搜索:每只蜜蜂根据一定的规则搜索新的解,并更新自己的位置。可以采用贪心策略、局部搜索等方法来寻找更优的解。 5. 信息交流:蜜蜂之间进行信息共享,可以通过直接相互交流或者间接交流来传递路径信息。这样可以帮助蜜蜂更好地探索解空间。 6. 更新路径:根据蜜蜂搜索的结果和信息交流,更新路径的位置和适应度值。 7. 判断终止条件:判断是否满足终止条件,比如达到最大迭代次数、找到满意的解等。 8. 输出最优解:根据问题定义和评估函数,输出找到的最优或接近最优的路径。 需要注意的是,人工蜂群算法的性能和效果与问题的复杂性、算法参数的设置以及问题定义和评估函数的选择等有关。在实际应用中,可以根据具体问题进行调整和优化,以达到更好的路径规划效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值