无人驾驶技术——FMCW radar


上一篇主要介绍Radar信号,包括波长,波的频率,信号的相位以及波的一般方程,这一节主要是针对汽车应用的首选雷达类型FMCW雷达进行学习了解,做个笔记分享,方便以后查询。

FMCW radar

调频连续波雷达(FMCW) (Frequency-Modulated Continuous Wave radar) 是一种特殊的辐射连续传输功率的雷达传感器。fmcw雷达能够测量非常小的目标距离以及同时测量目标距离和相对速度的能力使其成为汽车应用的首选雷达类型。
在这里插入图片描述
FMCW频率随时间增加/减少的信号。它们也被称为上行和下行坡道。fmcw雷达最常用的两种波形模式是锯齿形和三角形。锯齿波通常只使用上安培,而三角形波形同时使用上安培和下坡道。

每一个chirp都是由它的斜率定义的。斜率由其chirp频率带宽b或者b-sweep(X轴)扫描给出。
及其在x轴上的chirp时间Ts。因此,
在这里插入图片描述
距离分辨率要求决定了BB,而雷达的最大速度能力则由啁啾时间Ts决定。
我们将在后面的章节中更详细地讨论这一点。

一个chirp序列或段由多个chirp组成。为了精确测量多普勒速度,对每一个chirp信号进行多次采样,进行多次测距和雷达发射。

在课程项目中,您将对每个chirp1024次进行采样,并发送128个chirp来估计距离和多普勒速度。因此,在这种情况下,该段由128个chirp组成。

小测验

在18微秒的时间内,确定频率从77GHz到77.113 GHz的扫描的斜率。您应该用单位MHz/μs计算您的答案

(77.113-77)*1000 / 18 = 6.277 MHz/us

FMCW 硬件

FMCW 硬件示意图如下:
在这里插入图片描述
频率合成器:频率合成器是在汽车雷达的情况下产生频率使啁啾频率一直达到77GHz的部件。

功率放大器:功率放大器将信号放大,使信号能够达到远距离。由于信号在辐射时衰减,因此需要更高的功率(振幅)才能到达更远的目标。

天线:天线将电能转换成电磁波,电磁波通过空气辐射,击中目标,然后反射回雷达接收天线。天线还通过在所需方向聚焦能量来增加信号强度。此外,天线模式决定了雷达的视场。

混频器:在调频连续波雷达中,混频器将回波信号与频率合成器产生的扫频信号相乘。该操作作为频率减法来给出频率增量-也被称为频移或中频(if)。如果=合成器频率-返回信号频率。

处理器:处理器是所有数字信号处理、检测、跟踪、聚类和其他算法发生的处理单元。这个单元可以是一个微控制器,甚至是一个FPGA。

FMCW 天线

天线方向图

在这里插入图片描述
天线方向图是天线发射相对场强度的几何方向图。

天线的波束宽度决定了雷达传感器的视场。如果对雷达的要求仅仅是在它自己的车道上感知目标,那么波束宽度必须足够小,以覆盖整个车道,达到所需的范围。如果波束宽度大于车道宽度,它也会感应到其他车道上的目标。
在这里插入图片描述
天线辐射不仅包括远光,还包括旁瓣。天线旁瓣非常重要,因为它们可以产生错误的警报,并从不需要的方向上拾取干扰。如图所示,天线的旁瓣指向不同的方向,并能感应到不在远光中的目标。为了避免副瓣检测,重要的是从主光束的峰值抑制副瓣水平超过30分贝。

天线类型

有许多类型的天线(偶极子、贴片、喇叭)可以在77GHz下使用,但在汽车雷达中最常用的天线类型是贴片天线。贴片阵列天线成本低、制造简单、外形小巧,是汽车雷达应用的理想选择。下图是贴片阵列天线:
在这里插入图片描述
一个更强的光束可以帮助探测更远的物体,一个窄的光束可以帮助雷达聚焦到一个特定的车道上。

### FMCW Radar 工作原理与实现方法 调频连续波 (Frequency Modulated Continuous Wave, FMCW) 雷达是一种利用频率变化来测量目标距离和速度的技术。其工作原理基于发射线性调制的连续波信号,并通过接收回波信号计算目标的距离和相对速度。 #### 1. 发射信号设计 FMCW 雷达的核心在于发送经过线性调频的连续波信号,通常称为锯齿波或三角波形式的扫频信号。这种信号的特点是在时间上具有周期性的频率斜坡变化[^2]。 数学表达式可以表示为: \[ s(t) = A \cdot e^{j(2\pi f_c t + k_t)} \] 其中 \(f_c\) 是载波中心频率,\(k\) 表示频率随时间的变化率(即调频斜率),而 \(A\) 则代表信号幅度。 #### 2. 接收信号处理 当发射信号遇到目标并反射回来时,由于传播延迟的存在,接收到的信号会相对于原始信号产生相位差以及多普勒效应引起的频率偏移。假设目标到雷达之间的往返时间为 \(\tau\) ,则接收信号可写成如下形式: \[ r(t) = R \cdot e^{j(2\pi f_c (t-\tau) + k(t-\tau))} \] 通过对混频器得到的中频信号进行傅里叶变换分析,可以从频率域提取出对应的目标信息。具体来说,混合后的信号包含两个主要成分:一个是因路径长度差异造成的固定频率分量;另一个是由运动物体引发的速度相关项[^3]。 #### 3. 距离与速度解算 - **距离测定**:由上述公式可知,如果能够精确测得两者的频率偏差,则可以直接推导出目标位置参数。 \[ d=\frac{c}{2}\Delta_f/k \] - **速度检测**:对于移动中的对象而言,在下一帧扫描期间还会叠加额外的一个正弦型波动模式,这便是所谓的多普勒频移现象。因此可以通过进一步解析获得瞬时速率数据。 \[ v=-\lambda/2T_s * n_{Doppler} \] 以下是简单的 Python 实现代码用于模拟基本功能: ```python import numpy as np from scipy.fftpack import fft,fftfreq def fmw_radar_simulation(frequency_slope=50e9,duration=0.001,sampling_rate=1e6): time=np.arange(0,duration,1/sampling_rate) transmitted_signal=np.exp(1j*2*np.pi*(frequency_slope*time)) delay_time=duration//4 # Simulate target at one quarter of total duration received_signal=np.roll(transmitted_signal,int(delay_time*sampling_rate))+np.random.normal(scale=.1,size=len(time)) mixed_signal=received_signal*np.conjugate(transmitted_signal) spectrum=fft(mixed_signal) freqs=fftfreq(len(spectrum),d=1./sampling_rate) peak_index=np.argmax(np.abs(spectrum)) estimated_frequency=freqs[peak_index] distance=(estimated_frequency/frequency_slope)*3e8/2 return {"distance":distance,"time":time} ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值