学习游戏建模的话,还不清楚电脑配置需要什么样的吗?「部分」

以三维设计中的C4D为例,主要依赖显卡、CPU、内存。3dmax比C4D要求的配置略高一点,只要满足了C4D,再增加一点配置就能满足3DMAX。在这里插入图片描述
一、显卡

不同于AE/PR对显卡的要求一般,C4D对显卡的要求非常高,

因为C4D除了标准渲染器、物理渲染器等CPU渲染器之外,渲染过程的过程还可以完全依赖显卡的GPU进行渲染,GPU的核心数通常2千个以上,是CPU的核心数的几十倍,因此,显卡GPU的实时渲染速度要比CPU快很多。
在这里插入图片描述
A卡还是N卡:

N卡就是NVIDIA显卡,代表技术是CUDA,A卡就是AMD显卡,代表技术是OpenGL。

C4D本身对A卡的支持就不是很好,使用A卡常常会遇到C4D的openGL是灰色状态,无法勾选。

以最出众的Octane渲染器和Redshift渲染器来说,这些渲染器都是只支持N卡,而不支持A卡。

Redshift这款渲染器在产品介绍上说明了是“完全基于CUDA通用计算平台”。

唯一支持A卡的GPU渲染器目前只有r19内置的prorender和Indigo Renderer(光线跟踪渲染器)这两款渲染器,

尽管C4D R19加入了AMD的Radeon ProRender渲染引擎,但稍显不足,其好用性远远不及OC这些老牌的GPU渲染器,有各种软件+硬件小问题,相信随着C4D迭代升级以后会好一些吧。

A卡与N卡的使用差距随着软硬件升级应该会慢慢减少,但至少目前还是N卡兼容性比较好。
在这里插入图片描述
——专业卡还是游戏卡:

专业卡对单帧细节的描绘上更完美,游戏卡注重的是渲染速度,即所谓的“帧率”。

专业卡和游戏卡都能在C4D各类渲染器上运行,比如,最依赖显卡的OC渲染器,在官网亮出的各类测试显卡中,既包括GT系列的游戏卡,也包括Quadro系列的专业卡,都能表现出不错的渲染效果,并且游戏卡与同价位的专业卡相比,渲染速度上要远超于专业卡,因此游戏卡性价比更高。

专业卡的优势是精度高,噪点少,主要是应用在计算机辅助设计(CAD)、3DMAX、复杂模型设计(如Rhino)等方面,对C4D而言,无论是做平面设计还是影视后期,选择中高端游戏卡已经足够使用。

——静帧还是动画:

如果是平面设计,渲染静帧,尤其是要模拟真实环境的渲染,使用默认渲染器或物理渲染器比较合适,因此主要是对CPU有要求,显卡可以买个中低端的,1050TI以上就可以了,把钱投入到CPU上,能省下不少钱。

如果是影视后期,渲染三维动画,使用GPU渲染,那么就在要在显卡上加大投入。显卡对C4D的作用,更多是体现在显卡对C4D插件的支持上。

——与PS/AE/PR协同:

如果除了使用C4D外,还要兼顾Adobe全家桶PS、AE、PR的使用话,那么N卡的CUDA加速技术对PS、AE、PR的加速效果会更好一些。同等规格下,N卡CUDA大概比A卡的OpenCL快17%-20%。

——双显卡:

NVIDIA 的双显卡技术:即SLI桥接技术,需要主板支持。简单来说,就是让两块显卡并排一起协同工作,以便增加显示性能。

OC等渲染器对SLI支持不是很好,官方建议是禁用SLI,况且双显卡的组成条件复杂,功耗大,所以不建议双显卡,还是把钱花在购买单块高性能的显卡上。

双显卡主要还是针对游戏用户,如果你一定要组双显卡,那么条件是:

1、主板必须支持双显卡技术,主板说明中有“SLI”字样的就是支持的。

2、主显卡本身必须支持“双显卡”功能;

3、双显卡功耗非常大,散热系统要强劲。

双显卡对C4D的预览和渲染有一定的加速作用。

在这里插入图片描述

——显卡推荐:

显卡的好坏主要看显存、位宽和CUDA数量,都是数值越大显卡越好。

一、入门级

①、GTX 1650 SUPER:

显存容量:4GB,显存位宽:128bit,CUDA核心:1280个

1200元左右。

②、GTX 1660 :

显存容量:4GB,显存位宽:128bit,CUDA核心:1408个

1500元左右。

二、中端

①、GTX 1660Ti:

显存:6GB,位宽:192bit,CUDA核心:1536个

价格:2200元左右。

②、RTX 2060 Super :

显存容量:8GB,显存位宽:256bit,CUDA核心:2176个

价格:3200元左右

(注意:这个显卡比较新,可能有些渲染器还支持不到)

③、RTX 2070:

显存容量:8GB,显存位宽:256bit,CUDA核心:2304个

价格:3500元左右

④、RTX 2070 Super :

显存:8GB,位宽:256bit,CUDA核心:2560个

价格:3800元左右。

三、高端:

①、RTX2080 SUPER:

显存容量:8GB,显存位宽:256bit,CUDA核心:3072个

价格:5600元左右。

②、RTX 2080 Ti

显存容量:11GB,显存位宽:352bit,CUDA核心:4352个

价格:9000元左右。

四、发烧级:

①、丽台Quadro P5000(专业卡)

显存容量:16GB,显存位宽:256bit,CUDA核心:2560个

价格:15700元左右。

②、NVIDIA TITAN RTX

显存容量:24GB,显存位宽:384bit,CUDA核心:4608个

价格:21000元左右。

想了解更多的游戏建模【戳这直接进入】领取海量学习资料

### Mallet JVM 环境配置指南 Mallet 是一个用于自然语言处理和主题建模的强大工具包,它依赖于 Java 虚拟机 (JVM) 来运行。以下是关于如何正确配置 Mallet 所需的 JVM 环境的相关说明。 #### 1. 安装 JDK 为了使 Mallet 正常工作,首先需要安装适合版本的 Java Development Kit (JDK),因为 Mallet 需要完整的 Java 编程环境来执行其功能。推荐使用 OpenJDK 或 Oracle JDK 的最新稳定版本[^1]。可以通过以下命令验证当前系统的 JDK 是否已经安装: ```bash java -version javac -version ``` 如果未检测到任何版本,则可以从官方站点下载并安装合适的 JDK 版本。 #### 2. 设置 JAVA_HOME 环境变量 为了让操作系统识别所安装的 JDK 并能正常调用 Java 命令,设置 `JAVA_HOME` 环境变量是非常重要的一步。具体操作如下: - **Linux/MacOS**: 修改 `.bashrc`, `.zshrc` 文件或者直接在终端输入: ```bash export JAVA_HOME=/path/to/your/jdk export PATH=$JAVA_HOME/bin:$PATH ``` - **Windows**: 右键点击“此电脑”,选择属性 -> 高级系统设置 -> 环境变量,在其中新建或编辑名为 `JAVA_HOME` 的变量,并指向 JDK 的根目录路径。 完成上述更改后,请重新启动终端窗口以应用新的环境变量设定。 #### 3. 下载与解压 Mallet 工具包 访问 Mallet 的官方网站获取最新的发行版压缩文件。通常情况下会得到一个 tar.gz 或 zip 格式的存档文件。将其保存至本地磁盘上的某个位置之后进行解压。例如,在 Linux 上可以这样操作: ```bash tar -xzvf mallet-<version>.tar.gz cd mallet-<version> ``` 对于 Windows 用户来说,可以选择 WinRAR 或其他类似的程序来进行同样的任务。 #### 4. 测试 Mallet 运行状况 进入刚刚解压出来的 Mallet 主目录下尝试运行一些基本指令来确认一切是否就绪: ```bash bin/mallet ``` 如果没有报错消息显示出来的话,那么恭喜您成功完成了初步部署! --- ### 补充注意事项 虽然 Deeplearning4j 同样基于 JVM 构建而成,但它更专注于深度学习领域;而 DCEVM 则允许开发者在重启服务的前提下实现热更新机制[^2]。至于那些能够在 JVM 上运行的语言选项如 Scala, Groovy 等则提供了更加灵活多样的语法风格供程序员选用[^3]。过这些特性均属于本次讨论范围之内。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值