里卡提方程(Riccati Equation)例子

本文介绍了里卡提方程在最优控制和估计问题中的应用,如线性二次型调节器(LQR)和卡尔曼滤波器,并在人形机器人控制中展示了其在步态、姿态、平衡和轨迹跟踪控制中的重要性。同时提供了一个使用Python实现LQR的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

里卡提方程(Riccati Equation)

里卡提方程(Riccati Equation)在人形机器人控制中有重要的应用,特别是在最优控制和估计问题中。里卡提方程主要用于求解线性二次型调节器(LQR, Linear Quadratic Regulator)和卡尔曼滤波器(Kalman Filter)。这些方法有助于提高机器人控制的稳定性和性能。

里卡提方程简介

离散时间里卡提方程的一般形式为:
在这里插入图片描述

线性二次型调节器(LQR)

LQR 是一种经典的最优控制方法,通过求解里卡提方程来最小化控制系统的性能指标。对于给定的线性系统:
在这里插入图片描述

卡尔曼滤波器

卡尔曼滤波器用于最优状态估计问题,通过求解里卡提方程来计算最优估计增益。对于线性系统:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值