PyramidFlow: High-Resolution Defect Contrastive Localization using Pyramid Normalizing Flow

归一化流详细解释

参考论文: Glow: Generative Flow with Invertible 1×1 Convolutions
在这里插入图片描述
在这里插入图片描述

网络模型结构图

  • 归一化流的基本概念:通过仿射变换将一个先验分布转化为一个后验分布,其中后验分布的概率密度函数满足归一化条件。
  • 模型结构图
    在这里插入图片描述

论文具体的内容部分可以参考原文。

### Fully Convolutional Cross-Scale Flows (CS-Flow): 方法概述 Fully Convolutional Cross-Scale Flows (CS-Flow) 是一种用于图像缺陷检测的方法,其核心在于通过联合处理多尺度特征图并利用归一化流模型来估计输入样本的概率密度。这种方法不仅能够在图像层面实现高效的缺陷检测,还能够通过保留空间排列的方式解释潜在空间,从而精确定位图像中的缺陷区域。 #### CS-Flow 的基本原理 CS-Flow 基于归一化流(Normalizing Flow)的概念构建了一个全卷积网络框架。该方法的核心目标是对无监督或半监督条件下的正常图像分布进行建模,并基于此识别异常模式。具体而言,CS-Flow 使用了跨尺度的特征融合机制,使得模型可以同时捕捉全局和局部的信息[^2]。 #### 多尺度特征处理 为了更好地适应不同类型的缺陷表现形式,CS-Flow 设计了一种跨尺度架构,其中多个特征图被共同优化以反映不同的抽象层次。这种设计有助于增强模型对复杂背景变化以及细粒度细节的理解能力。通过对这些多层次特征的学习,CS-Flow 能够更精确地区分正常与异常情况下的视觉差异。 #### 归一化流的作用 在 CS-Flow 中引入了归一化流技术作为概率密度估计工具。这一部分负责将复杂的高维数据映射到简单的先验分布上,进而计算每张测试图片相对于训练集中“正常”样例集合所表现出的可能性得分。较低可能性分数通常指示存在某种形式上的偏离——即可能对应着某个特定位置处出现了表面瑕疵等问题现象。 #### 缺陷定位功能 除了提供整体级别的判断之外,由于保持住了原始像素之间的相对关系不变,在经过变换后的隐含向量里仍然保存有足够丰富的地理位置线索可供进一步挖掘分析之用;因此当发现某片区域具有显著不同于其他地方特性的数值特性时候,则可以直接回溯找到相应实际坐标范围内的疑似问题部位所在之处。 ```python import torch from csflow import CSFlowModel # Hypothetical module representing the CS-Flow model. def detect_defects(image_tensor, threshold=0.5): """ Detect defects in an input image tensor using CS-Flow. Args: image_tensor (torch.Tensor): Input image as a PyTorch Tensor of shape [C,H,W]. threshold (float): Probability threshold to classify regions as defective or not. Returns: Tuple[bool, List[Tuple[int]]]: Whether there is any defect present along with coordinates list. """ device = 'cuda' if torch.cuda.is_available() else 'cpu' model = CSFlowModel(pretrained=True).to(device) with torch.no_grad(): prob_map = model(image_tensor.unsqueeze(0)).squeeze().cpu().numpy() mask = prob_map < threshold coords = [(i,j) for i,row in enumerate(mask) for j,val in zip(range(len(row)), row) if val] has_defect = bool(coords) return has_defect, coords ``` 上述代码片段展示如何加载预训练好的 CS-Flow 模型并对单幅灰阶图像执行预测操作过程。最终输出包括是否存在缺陷标志以及所有可疑点坐标的列表形式结果集。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值