自抗扰控制中的扩张状态观测器收敛性分析2

上一篇博客里我们分析了文献[1]证明积分形式系统扩张状态观测器(ESO)收敛性的套路(以下称博客1),并且指出收敛性分析依赖于假设Lyapunov函数存在且满足一定条件(即假设3),这个假设随后在文献[1]中进一步放宽如下:

假设4:存在常数 R R R α > 0 \alpha>0 α>0以及正定连续可微函数 V V V W W W R n + 1 → R \mathbb{R}^{n+1}\rightarrow\mathbb{R} Rn+1R使得

  • 对任意 d > 0 d>0 d>0,集合 { y ∣ V ( y ) ≤ d } \{y\vert V(y)\leq d\} {yV(y)d}有界,
  • ∑ i = 1 n ∂ V ∂ y i ( y i + 1 − g i ( y 1 ) ) − ∂ V ∂ y n + 1 g n + 1 ( y 1 ) ≤ − W ( y ) \sum\limits_{i=1}^{n}\frac{\partial V}{\partial y_i}(y_{i+1}-g_i(y_1))-\frac{\partial V}{\partial y_{n+1}}g_{n+1}(y_1)\leq -W(y) i=1nyiV(yi+1gi(y1))yn+1Vgn+1(y1)W(y)
  • ∥ y ∥ ≥ R \Vert y\Vert\geq R yR时, ∣ ∂ V ∂ y n + 1 ∣ ≤ α W ( y ) \left|\frac{\partial V}{\partial y_{n+1}}\right|\leq \alpha W(y) yn+1VαW(y)成立。

对比假设3和假设4可以看到,最大的不同是假设4只是要求 V V V W W W正定,而不是像假设3那样大于自变量的范数平方乘以某个常数,相应地,收敛性能也需要打一点折扣,具体结论如下:

定理2:若假设1,假设2和假设4成立,则ESO收敛:对任意 σ ∈ ( 0 , 1 ) \sigma\in(0,1) σ(0,1),存在与 σ \sigma σ有关的量 ε σ ∈ ( 0 , 1 ) \varepsilon_\sigma\in(0,1) εσ(0,1),使得对任意 ε ∈ ( 0 , ε σ ) \varepsilon\in(0,\varepsilon_\sigma) ε(0,εσ) ∣ x i ( t ) − x ^ i ( t ) ∣ &lt; σ \vert x_i(t)-\hat{x}_i(t)\vert&lt;\sigma xi(t)x^i(t)<σ对所有 t ∈ ( T ε , ∞ ) t\in (T_\varepsilon,\infty) t(Tε,)均成立,其中 T ε &gt; 0 T_\varepsilon&gt;0 Tε>0 ε \varepsilon ε有关, x i x_i xi x ^ i \hat{x}_i x^i分别为原系统和ESO的解, i = 1 , 2 , … , n + 1 i=1,2,\ldots,n+1 i=1,2,,n+1 x n + 1 = f + w x_{n+1}=f+w xn+1=f+w为原系统的扩张状态(这里和上一篇博客中的定义保持一致)。

证明:在开始证明之前,为了对正定函数进行定量分析,需要利用文献[3]中的引理4.3。具体来说,我们首先定义所谓的 K \mathcal{K} K类函数:连续函数 α \alpha α [ 0 , a ) → [ 0 , ∞ ) [0,a)\rightarrow[0,\infty) [0,a)[0,)属于 K \mathcal{K} K类函数,如果其严格递增且 α ( 0 ) = 0 \alpha(0)=0 α(0)=0。如果 a = ∞ a=\infty a=且当 r → ∞ r\rightarrow\infty r α ( r ) → ∞ \alpha(r)\rightarrow\infty α(r),则 α \alpha α属于 K ∞ \mathcal{K}_\infty K类函数。这个定义纯属装B,目的是为了后面便于用一些花里胡哨的数学公式唬人。这里顺便提一句,如果想写控制理论方面的论文,为了凸显所谓理论的深度,文献[3]是写论文的必备参考书,很多定义和定理都是近十几年控制理论方面论文的基础。

给出所谓的 K \mathcal{K} K类函数定义后,文献[3]中的引理4.3具体内容如下:

引理4.3:设 V : D → R V:D\rightarrow R V:DR为连续正定函数,定义域 D D D包含原点,对于某个 r &gt; 0 r&gt;0 r>0 B r = { x ∈ R n ∣ ∥ x ∥ ≤ r } ⊂ D B_r=\{x\in\mathbb{R}^n\vert\Vert x\Vert\leq r\}\subset D Br={xRnxr}D,则存在定义于 [ 0 , r ] [0,r] [0,r]上的 K \mathcal{K} K类函数 α 1 \alpha_1 α1 α 2 \alpha_2 α2,使得对所有 x ∈ B r x\in B_r xBr,有
α 1 ( ∥ x ∥ ) ≤ V ( x ) ≤ α 2 ( ∥ x ∥ ) \alpha_1(\Vert x\Vert)\leq V(x)\leq\alpha_2(\Vert x\Vert) α1(x)V(x)α2(x)

D = R n D=\mathbb{R}^n D=Rn,则 α 1 \alpha_1 α1 α 2 \alpha_2 α2的定义域为 [ 0 , ∞ ) [0,\infty) [0,),上述不等式对所有 x ∈ R n x\in\mathbb{R}^n xRn均成立。进一步,若 V ( x ) V(x) V(x)径向无界,则可以选取 α 1 \alpha_1 α1 α 2 \alpha_2 α2 K ∞ \mathcal{K}_\infty K类函数。

根据引理4.3,存在 K \mathcal{K} K类函数 K i : [ 0 , ∞ ) → [ 0 , ∞ ) K_i:[0,\infty)\rightarrow [0,\infty) Ki:[0,)[0,) i = 1 , 2 , 3 , 4 i=1,2,3,4 i=1,2,3,4使得

K 1 ( ∥ ( y 1 , y 2 , … , y n + 1 ) ∥ ) ≤ V ( y 1 , y 2 , … , y n + 1 ) ≤ K 2 ( ∥ ( y 1 , y 2 , … , y n + 1 ) ∥ ) K 3 ( ∥ ( y 1 , y 2 , … , y n + 1 ) ∥ ) ≤ W ( y 1 , y 2 , … , y n + 1 ) ≤ K 4 ( ∥ ( y 1 , y 2 , … , y n + 1 ) ∥ ) K_1(\Vert (y_1,y_2,\ldots,y_{n+1})\Vert)\leq V(y_1,y_2,\ldots,y_{n+1}) \leq K_2(\Vert (y_1,y_2,\ldots,y_{n+1})\Vert)\\K_3(\Vert (y_1,y_2,\ldots,y_{n+1})\Vert)\leq W(y_1,y_2,\ldots,y_{n+1}) \leq K_4(\Vert (y_1,y_2,\ldots,y_{n+1})\Vert) K1((y1,y2,,yn+1))V(y1,y2,,yn+1)K2((y1,y2,,yn+1))K3((y1,y2,,yn+1))W(y1,y2,,yn+1)K4((y1,y2,,yn+1))

令博客1中系统(7)的解为 η ( t ; η 0 ) \eta(t;\eta_0) η(t;η0),其中 η 0 = ( e 1 ( 0 ) ε n , e 2 ( 0 ) ε n − 1 , … , e n + 1 ( 0 ) ) T \eta_0=\left(\frac{e_1(0)}{\varepsilon^n},\frac{e_2(0)}{\varepsilon^{n-1}}, \ldots,e_{n+1}(0)\right)^\mathrm{T} η0=(εne1(0),εn1e2(0),,en+1(0))T,整个证明过程分为下面几步,核心还是利用反证法。

第一步:证明存在 ε 1 ∈ ( 0 , 1 ) \varepsilon_1\in(0,1) ε1(0,1),使得对任意 ε ∈ ( 0 , ε 1 ) \varepsilon\in(0,\varepsilon_1) ε(0,ε1),均存在 t ε &gt; 0 t_\varepsilon&gt;0 tε>0使得

(15) { η ( t ; η 0 ) ∣ t ∈ [ t ε , ∞ ) } ⊂ { η ∣ V ( η ) ≤ C } \{\eta(t;\eta_0)\vert t\in[t_\varepsilon,\infty)\}\subset\{\eta\vert V(\eta)\leq C\} \tag{15} {η(t;η0)t[tε,)}{ηV(η)C}(15)

其中, C = max ⁡ ∥ y ∥ ≤ R V ( y ) &lt; ∞ C=\max\limits_{\Vert y\Vert\leq R}V(y)&lt;\infty C=yRmaxV(y)<,公式序号延续博客1。

这一步无非是想说当 t ≥ t ε t\geq t_\varepsilon ttε时, ∥ η ( t ; η 0 ) ∥ ≤ R \Vert \eta(t;\eta_0) \Vert\leq R η(t;η0)R。首先容易利用反证法证明存在 ε 0 ∈ ( 0 , 1 2 M α ) \varepsilon_0\in\left(0,\frac{1}{2M\alpha}\right) ε0(0,2Mα1)使得对任意 ε ∈ ( 0 , ε 0 ) \varepsilon\in(0,\varepsilon_0) ε(0,ε0),均存在常数 t ε &gt; 0 t_\varepsilon&gt;0 tε>0使得 ∥ η ( t ε ; η 0 ) ∥ ≤ R \Vert \eta(t_\varepsilon;\eta_0) \Vert\leq R η(tε;η0)R。如若不然,即对任意 ε ∈ ( 0 , ε 0 ) \varepsilon\in(0,\varepsilon_0) ε(0,ε0) ∥ η ( t ; η 0 ) ∥ &gt; R \Vert \eta(t;\eta_0) \Vert&gt; R η(t;η0)>R对所有 t &gt; 0 t&gt;0 t>0均成立,计算 V V V沿博客1中系统(7)的导数可得

d V d t = ∑ i = 1 n ∂ V ∂ η i ( η i + 1 − g i ( η 1 ) ) − ∂ V ∂ η n + 1 g n + 1 ( η 1 ) + ε Δ ∂ V ∂ η n + 1 ≤ − ( 1 − α ε M ) W ( η ) ≤ − K 3 ( R ) 2 &lt; 0 \begin{aligned} \frac{\mathrm{d}V}{\mathrm{d}t} =&amp;\sum_{i=1}^{n}\frac{\partial V}{\partial \eta_i}(\eta_{i+1}-g_i(\eta_1)) -\frac{\partial V}{\partial \eta_{n+1}}g_{n+1}(\eta_1)+\varepsilon\Delta\frac{\partial V}{\partial \eta_{n+1}}\\ \leq&amp; -(1-\alpha\varepsilon M)W(\eta)\leq -\frac{K_3(R)}{2}&lt;0 \end{aligned} dtdV=i=1nηiV(ηi+1gi(η1))ηn+1Vgn+1(η1)+εΔηn+1V(1αεM)W(η)2K3(R)<0

这样会导致 V V V的取值不断减小直到小于0,而这和 V V V是正定函数的设定矛盾,因此存在 ε 0 ∈ ( 0 , 1 2 M α ) \varepsilon_0\in\left(0,\frac{1}{2M\alpha}\right) ε0(0,2Mα1)使得对任意 ε ∈ ( 0 , ε 0 ) \varepsilon\in(0,\varepsilon_0) ε(0,ε0),均存在常数 t ε &gt; 0 t_\varepsilon&gt;0 tε>0使得 ∥ η ( t ε ; η 0 ) ∥ ≤ R \Vert \eta(t_\varepsilon;\eta_0) \Vert\leq R η(tε;η0)R,我们还可以顺便看到 1 2 M α \frac{1}{2M\alpha} 2Mα1这个量其实是从上面的不等式中凑出来的,在ADRC论文的证明中处处充满了试凑,也使得这样形成的论文只能自娱自嗨,没有任何实际意义。

接下来继续利用反证法证明第一步,主要思路是还是看 d V d t \frac{\mathrm{d}V}{\mathrm{d}t} dtdV的表现(其实所有Lyapunov稳定性框架下的控制理论文章都是看这个),并判断 V V V的值是否会大于 C C C,为此构造集合 { y ∣ C ≤ V ( y ) ≤ C + 1 } \{y\vert C\leq V(y)\leq C+1\} {yCV(y)C+1},显然这个集合是有界的,同时由于 ∂ V ∂ y n + 1 \frac{\partial V}{\partial y_{n+1}} yn+1V连续,因此
A = sup ⁡ Y ∈ { y ∣ C ≤ V ( y ) ≤ C + 1 } ∣ ∂ V ( y ) ∂ y n + 1 ∣ &lt; ∞ A=\sup_{Y\in\{y\vert C\leq V(y)\leq C+1\}}\left\vert\frac{\partial V(y)}{\partial y_{n+1}}\right\vert &lt;\infty A=Y{yCV(y)C+1}supyn+1V(y)<

同时考虑到 ∀ η ∈ { y ∣ C ≤ V ( y ) ≤ C + 1 } \forall \eta\in\{y\vert C\leq V(y)\leq C+1\} η{yCV(y)C+1},有

(16) W ( η ) ≥ K 3 ( ∥ η ∥ ) ≥ K 3 K 2 − 1 ( V ( η ) ) ≥ K 3 K 2 − 1 ( C ) &gt; 0 W(\eta)\geq K_3(\Vert\eta\Vert)\geq K_3K_2^{-1}(V(\eta)) \geq K_3K_2^{-1}(C)&gt;0\tag{16} W(η)K3(η)K3K21(V(η))K3K21(C)>0(16)

然后反证法登场。因为之前证明了 ∥ η ( t ε ; η 0 ) ∥ ≤ R \Vert \eta(t_\varepsilon;\eta_0) \Vert\leq R η(tε;η0)R,也就意味着 V ( η ( t ε ; η 0 ) ) ≤ C V(\eta(t_\varepsilon;\eta_0))\leq C V(η(tε;η0))C。若第一步的结论错误,即当 t ≥ t ε t\geq t_\varepsilon ttε时, ∥ η ( t ; η 0 ) ∥ \Vert \eta(t;\eta_0)\Vert η(t;η0)会逃脱 { η ∣ V ( η ) ≤ C } \{\eta\vert V(\eta)\leq C\} {ηV(η)C}这个集合,取
(17) ε 1 = min ⁡ { 1 , K 3 K 2 − 1 ( C ) A M } \varepsilon_1=\min\left\{1,\frac{K_3K_2^{-1}(C)}{AM}\right\}\tag{17} ε1=min{1,AMK3K21(C)}(17)

则存在 ε &lt; ε 1 \varepsilon&lt;\varepsilon_1 ε<ε1 t 1 ε , t 2 ε ∈ ( t ε , ∞ ) t_1^\varepsilon,t_2^\varepsilon\in (t_\varepsilon,\infty) t1ε,t2ε(tε,) t 1 ε &lt; t 2 ε t_1^\varepsilon&lt;t_2^\varepsilon t1ε<t2ε使得

(18) η ( t 1 ε ; η 0 ) ∈ { η ∣ V ( η ) = C } , &ThickSpace; η ( t 2 ε ; η 0 ) ∈ { η ∣ V ( η ) &gt; C } \eta(t_1^\varepsilon;\eta_0)\in\{\eta\vert V(\eta)=C\},\; \eta(t_2^\varepsilon;\eta_0)\in\{\eta\vert V(\eta)&gt;C\}\tag{18} η(t1ε;η0){ηV(η)=C},η(t2ε;η0){ηV(η)>C}(18)

以及
(19) { η ( t ; η 0 ) ∣ t ∈ [ t 1 ε , t 2 ε ] } ⊂ { y ∣ C ≤ V ( y ) ≤ C + 1 } \{\eta(t;\eta_0)\vert t\in[t_1^\varepsilon,t_2^\varepsilon]\} \subset \{y\vert C\leq V(y)\leq C+1\}\tag{19} {η(t;η0)t[t1ε,t2ε]}{yCV(y)C+1}(19)

其实就是在 C C C C + 1 C+1 C+1上各取一个时刻,然后考察两个时刻之间 V V V的取值情况。结合式(16)和(19)可得
(20) inf ⁡ t ∈ [ t 1 ε , t 2 ε ] W ( η ( t ; η 0 ) ) ≥ K 3 K 2 − 1 ( C ) \inf_{t\in[t_1^\varepsilon,t_2^\varepsilon]}W(\eta(t;\eta_0))\geq K_3K_2^{-1}(C)\tag{20} t[t1ε,t2ε]infW(η(t;η0))K3K21(C)(20)

因此,对 t ∈ [ t 1 ε , t 2 ε ] t\in[t_1^\varepsilon,t_2^\varepsilon] t[t1ε,t2ε] V V V 沿系统(7)的导数满足
d V ( η ( t ; η 0 ) ) d t ≤ − W ( η ( t ; η 0 ) ) + A M ε ≤ − K 3 K 2 − 1 ( C ) + A M K 3 K 2 − 1 ( C ) A M = 0 \frac{\mathrm{d}V(\eta(t;\eta_0))}{\mathrm{d} t} \leq -W(\eta(t;\eta_0))+AM\varepsilon \leq -K_3K_2^{-1}(C)+AM\frac{K_3K_2^{-1}(C)}{AM}=0 dtdV(η(t;η0))W(η(t;η0))+AMεK3K21(C)+AMAMK3K21(C)=0

可见 V ( η ( t ; η 0 ) ) V(\eta(t;\eta_0)) V(η(t;η0)) [ t 1 ε , t 2 ε ] [t_1^\varepsilon,t_2^\varepsilon] [t1ε,t2ε]内取值是非增的(发现了吗?式(17)中的 K 3 K 2 − 1 ( C ) A M \frac{K_3K_2^{-1}(C)}{AM} AMK3K21(C)就是从上式试凑出来的),从而
V ( η ( t 2 ε ; η 0 ) ) ≤ V ( η ( t 1 ε ; η 0 ) ) = C V(\eta(t_2^\varepsilon;\eta_0))\leq V(\eta(t_1^\varepsilon;\eta_0))=C V(η(t2ε;η0))V(η(t1ε;η0))=C

这就和式(18)矛盾了,反证法的目的达成,第一步得证。

第二步:证明存在 ε σ ∈ ( 0 , ε 1 ) \varepsilon_\sigma\in(0,\varepsilon_1) εσ(0,ε1)使得对任意 ε ∈ ( 0 , ε σ ) \varepsilon\in(0,\varepsilon_\sigma) ε(0,εσ),存在 T ε ∈ [ t ε , t ε + 2 C K 3 ( δ ) ] T_\varepsilon\in\left[t_\varepsilon,t_\varepsilon+\frac{2C}{K_3(\delta)}\right] Tε[tε,tε+K3(δ)2C]使得 ∥ η ( T ε ; η 0 ) ∥ &lt; δ \Vert \eta(T_\varepsilon;\eta_0)\Vert&lt;\delta η(Tε;η0)<δ。(原文这里的表达式有点问题, ∥ η ∥ \Vert\eta\Vert η V V V的取值范围是有区别的,我们关注的重点应该是 ∥ η ∥ \Vert\eta\Vert η的界)。

这一步是想说明 η ( t ; η 0 ) \eta(t;\eta_0) η(t;η0) T ε T_\varepsilon Tε处开始收敛。注意到 V V V为连续函数,对任意 σ &gt; 0 \sigma&gt;0 σ>0,存在 δ ∈ ( 0 , σ ) \delta\in(0,\sigma) δ(0,σ)使得(有没有回忆起数学分析中著名的 ε − δ \varepsilon-\delta εδ语言?)
(21) 0 ≤ V ( η ) ≤ K 1 ( σ ) , &ThickSpace; ∀ ∥ η ∥ ≤ δ 0\leq V(\eta)\leq K_1(\sigma),\;\forall \Vert\eta\Vert\leq\delta\tag{21} 0V(η)K1(σ),ηδ(21)

同时,对任意 ∥ η ∥ ≥ δ \Vert\eta\Vert\geq\delta ηδ,有
(22) W ( η ) ≥ K 3 ( ∥ η ∥ ) ≥ K 3 ( δ ) &gt; 0 W(\eta)\geq K_3(\Vert\eta\Vert)\geq K_3(\delta)&gt;0\tag{22} W(η)K3(η)K3(δ)>0(22)

根据第一步的结论,对任意 ε ∈ ( 0 , ε 1 ) \varepsilon\in(0,\varepsilon_1) ε(0,ε1) { η ( t ; η 0 ) ∣ t ∈ [ t ε , ∞ ) } ⊂ { η ∣ V ( η ) ≤ C } \{\eta(t;\eta_0)\vert t\in[t_\varepsilon,\infty)\}\subset\{\eta\vert V(\eta)\leq C\} {η(t;η0)t[tε,)}{ηV(η)C},因此
H = sup ⁡ t ∈ [ t ε , ∞ ) ∣ ∂ V ∂ η n + 1 ( η ( t ; η 0 ) ) ∣ ≤ sup ⁡ η ∈ { η ∣ V ( η ) ≤ C } ∣ ∂ V ∂ η n + 1 ( η ) ∣ ≤ ∞ H=\sup_{t\in[t_\varepsilon,\infty)}\left\vert\frac{\partial V}{\partial \eta_{n+1}}(\eta(t;\eta_0))\right\vert \leq \sup_{\eta\in\{\eta\vert V(\eta)\leq C\}}\left\vert\frac{\partial V}{\partial \eta_{n+1}}(\eta)\right\vert \leq \infty H=t[tε,)supηn+1V(η(t;η0))η{ηV(η)C}supηn+1V(η)

接下来反证法登场。若第二步的结论错误,则对于
ε σ = min ⁡ { ε 1 , K 3 ( δ ) 2 H M } \varepsilon_\sigma=\min\left\{\varepsilon_1,\frac{K_3(\delta)}{2HM}\right\} εσ=min{ε1,2HMK3(δ)}

存在一个 ε &lt; ε σ \varepsilon&lt;\varepsilon_\sigma ε<εσ使得对任意 t ∈ [ t ε , t ε + 2 C K 3 ( δ ) ] t\in\left[t_\varepsilon,t_\varepsilon+\frac{2C}{K_3(\delta)}\right] t[tε,tε+K3(δ)2C],均有 ∥ η ( t ; η 0 ) ∥ ≥ δ \Vert \eta(t;\eta_0)\Vert\geq\delta η(t;η0)δ。结合式(22)可知对这个选取的 ε &lt; ε σ \varepsilon&lt;\varepsilon_\sigma ε<εσ和所有 t ∈ [ t ε , t ε + 2 C K 3 ( δ ) ] t\in\left[t_\varepsilon,t_\varepsilon+\frac{2C}{K_3(\delta)}\right] t[tε,tε+K3(δ)2C],有
d V ( η ( t ; η 0 ) ) d t ≤ − W ( η ( t ; η 0 ) ) + ∣ ∂ V ( η ( t ; η 0 ) ) ∂ η n + 1 M ε ∣ ≤ − K 3 ( δ ) 2 &lt; 0 \frac{\mathrm{d}V(\eta(t;\eta_0))}{\mathrm{d} t} \leq -W(\eta(t;\eta_0))+\left\vert\frac{\partial V(\eta(t;\eta_0))}{\partial \eta_{n+1}}M\varepsilon\right\vert\leq -\frac{K_3(\delta)}{2}&lt;0 dtdV(η(t;η0))W(η(t;η0))+ηn+1V(η(t;η0))Mε2K3(δ)<0

对上式两端在 t ∈ [ t ε , t ε + 2 C K 3 ( δ ) ] t\in\left[t_\varepsilon,t_\varepsilon+\frac{2C}{K_3(\delta)}\right] t[tε,tε+K3(δ)2C]上积分可得
V ( η ( 2 C K 3 ( δ ) ; η 0 ) ) = ∫ t ε t ε + 2 C K 3 ( δ ) d V ( η ( t ; η 0 ) ) d t d t + V ( η ( t ε ; η 0 ) ) ≤ − K 3 ( δ ) 2 2 C K 3 ( δ ) + V ( η ( t ε ; η 0 ) ) ≤ 0 \begin{aligned} V\left(\eta\left(\frac{2C}{K_3(\delta)};\eta_0\right)\right) =&amp;\int_{t_\varepsilon}^{t_\varepsilon+\frac{2C}{K_3(\delta)}} \frac{\mathrm{d}V(\eta(t;\eta_0))}{\mathrm{d}t}\mathrm{d}t +V(\eta(t_\varepsilon;\eta_0))\\ \leq&amp; -\frac{K_3(\delta)}{2}\frac{2C}{K_3(\delta)}+V(\eta(t_\varepsilon;\eta_0)) \leq 0\end{aligned} V(η(K3(δ)2C;η0))=tεtε+K3(δ)2CdtdV(η(t;η0))dt+V(η(tε;η0))2K3(δ)K3(δ)2C+V(η(tε;η0))0

由于对任意 t ∈ [ t ε , t ε + 2 C K 3 ( δ ) ] t\in\left[t_\varepsilon,t_\varepsilon+\frac{2C}{K_3(\delta)}\right] t[tε,tε+K3(δ)2C],均有 ∥ η ( t ; η 0 ) ∥ ≥ δ \Vert \eta(t;\eta_0)\Vert\geq\delta η(t;η0)δ,那么应该有
V ( η ) ≥ K 1 ( ∥ η ∥ ) ≥ K 1 ( δ ) &gt; 0 V(\eta)\geq K_1(\Vert\eta\Vert)\geq K_1(\delta)&gt;0 V(η)K1(η)K1(δ)>0

这就导致矛盾了,反证法的目的达成,第二步的结论得证。

第三步:证明对每一个 ε ∈ ( 0 , ε σ ) \varepsilon\in (0,\varepsilon_\sigma) ε(0,εσ),如果存在 T ε ∈ [ t ε , ∞ ) T_\varepsilon\in[t_\varepsilon,\infty) Tε[tε,)使得 η ( T ε ; η 0 ) ∈ { η ∣ ∥ η ∥ ≤ δ } \eta(T_\varepsilon;\eta_0)\in\{\eta\vert \Vert\eta\Vert\leq \delta\} η(Tε;η0){ηηδ},则有
(23) { η ( t ; η 0 ) ∣ t ∈ [ T ε , ∞ ) } ⊂ { η ∣ ∥ η ∥ ≤ σ } \{\eta(t;\eta_0)\vert t\in[T_\varepsilon,\infty)\}\subset \{\eta\vert\Vert\eta\Vert\leq\sigma\}\tag{23} {η(t;η0)t[Tε,)}{ηησ}(23)

这一步是接着第二步,想说明 η ( t ; η 0 ) \eta(t;\eta_0) η(t;η0) t ≥ T ε t\geq T_\varepsilon tTε之后进一步收敛,同样利用反证大法证明。若第三步的结论错误,意味着 η ( t ; η 0 ) \eta(t;\eta_0) η(t;η0) t ≥ T ε t\geq T_\varepsilon tTε之后发散,则存在 t 2 ε &gt; t 1 ε ≥ T ε t_2^\varepsilon&gt;t_1^\varepsilon\geq T_\varepsilon t2ε>t1εTε使得(这里和第一步用了同样的符号,但仅限于第三步使用)
(24) ∥ η ( t 1 ε ; η 0 ) ∥ = δ , &ThickSpace;&ThickSpace; ∥ η ( t 2 ε ; η 0 ) ∥ &gt; δ , { η ( t ; η 0 ) ∣ t ∈ [ t 1 ε , t 2 ε ] } ⊂ { η ∣ ∥ η ∥ ≥ δ } \Vert\eta(t_1^\varepsilon;\eta_0)\Vert=\delta,\;\; \Vert\eta(t_2^\varepsilon;\eta_0)\Vert&gt;\delta,\\ \{\eta(t;\eta_0)\vert t\in[t_1^\varepsilon,t_2^\varepsilon]\}\subset\{\eta\vert\Vert\eta\Vert\geq\delta\}\tag{24} η(t1ε;η0)=δ,η(t2ε;η0)>δ,{η(t;η0)t[t1ε,t2ε]}{ηηδ}(24)

结合式(22)可知对 t ∈ [ t 1 ε , t 2 ε ] t\in[t_1^\varepsilon,t_2^\varepsilon] t[t1ε,t2ε],有
(25) K 1 ( ∥ η ( t 2 ε ; η 0 ) ∥ ) ≤ V ( η ( t 2 ε ; η 0 ) ) = ∫ t 1 ε t 2 ε d V ( η ( t ; η 0 ) ) d t d t + V ( η ( t 1 ε ; η 0 ) ) ≤ ∫ t 1 ε t 2 ε − K 3 ( δ ) 2 d t + V ( η ( t 1 ε ; η 0 ) ) ≤ V ( η ( t 1 ε ; η 0 ) ) \begin{aligned} K_1(\Vert\eta(t_2^\varepsilon;\eta_0)\Vert)\leq&amp; V\left(\eta\left(t_2^\varepsilon;\eta_0\right)\right) =\int_{t_1^\varepsilon}^{t_2^\varepsilon}\frac{\mathrm{d}V(\eta(t;\eta_0))}{\mathrm{d}t}\mathrm{d}t +V\left(\eta\left(t_1^\varepsilon;\eta_0\right)\right)\\ \leq&amp; \int_{t_1^\varepsilon}^{t_2^\varepsilon}-\frac{K_3(\delta)}{2}\mathrm{d}t +V\left(\eta\left(t_1^\varepsilon;\eta_0\right)\right) \leq V\left(\eta\left(t_1^\varepsilon;\eta_0\right)\right) \end{aligned}\tag{25} K1(η(t2ε;η0))V(η(t2ε;η0))=t1εt2εdtdV(η(t;η0))dt+V(η(t1ε;η0))t1εt2ε2K3(δ)dt+V(η(t1ε;η0))V(η(t1ε;η0))(25)

进一步由式(21)和 ∥ η ( t 1 ε ; η 0 ) ∥ = δ \Vert\eta(t_1^\varepsilon;\eta_0)\Vert=\delta η(t1ε;η0)=δ可得
V ( η ( t 1 ε ; η 0 ) ) ≤ K 1 ( σ ) V(\eta(t_1^\varepsilon;\eta_0))\leq K_1(\sigma) V(η(t1ε;η0))K1(σ)

结合式(25)有
K 1 ( ∥ η ( t 2 ε ; η 0 ) ∥ ) ≤ K 1 ( σ ) K_1(\Vert\eta(t_2^\varepsilon;\eta_0)\Vert)\leq K_1(\sigma) K1(η(t2ε;η0))K1(σ)

根据 K \mathcal{K} K类函数的定义, K 1 K_1 K1单调递增,因此上面的不等式意味着 η ( t 2 ε ; η 0 ) ≤ σ \eta(t_2^\varepsilon;\eta_0)\leq \sigma η(t2ε;η0)σ,这和式(24)矛盾,从而第三步的结论正确。根据前面三步的结论可知,定理2的结论成立,证明完毕。

总结一下,这三步首先是证明观测误差有界,然后是观测误差在某一个时间点收敛,最后是观测误差在该时间点之后进一步收敛。三步的证明核心都是反证法,如果不收敛,那么选取两个时间点,考虑这两个时间点之间Lyapunov函数的变化,然后想办法凑 的值(充分利用了$\varepsilon $理论上可以任意小),导出矛盾。也许是觉得三步证明有点繁琐,所以作者在文献[2]中又进行了改进,我们在下一篇博客进行分析。

可以看到,这篇博客的大部分都是为了证明一个所谓的存在性定理,然后堆砌了大量的公式。这里谈一点个人感受,目前控制理论方面的论文总体趋势是偏数学,而且越是顶刊,这种趋势越明显,从而也离控制工程背景越远。而且特别不好的地方是,在当前国内研究生教育培养背景下,论文指标和毕业压力使得大部分控制学科的博士生出于为写论文而写论文的目的而自觉或者不自觉往这个趋势靠近。这些论文是如此不接地气,以至于如果不是仔细阅读的话,很容易被表面堆砌的公式给唬住,可是看明白套路后也会觉得没多大意思。这些利用了数学工具的论文既没能在理论上媲美纯粹数学方面的研究,也没能在最后回到工程背景来为控制工程师提供指导。也许只有当毕业后不受论文压力的指使,才能真正开始做一点有意义的研究吧。

参考文献

[1]Guo B Z, Zhao Z. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6): 420-430.

[2]Zhao Z L, Guo B Z. Extended state observer for uncertain lower triangular nonlinear systems[J]. Systems & Control Letters, 2015, 85: 100-108.

[3]Khalil H K. Nonlinear systems[M]. Prentice-Hall, 2001.

  • 4
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值