# 自抗扰控制中的扩张状态观测器收敛性分析3

11 篇文章 0 订阅

{ x ˙ 1 ( t ) = x 2 ( t ) + g 1 ( u ( t ) , x 1 ( t ) ) , x ˙ 2 ( t ) = x 3 ( t ) + g 2 ( u ( t ) , x 1 ( t ) , x 2 ( t ) ) , ⋮ x ˙ n ( t ) = f ( t , x ( t ) , w ( t ) ) + g n ( u ( t ) , x ( t ) ) , y ( t ) = x 1 ( t ) , (1) \left\{\begin{aligned} &\dot{x}_1(t)=x_2(t)+g_1(u(t),x_1(t)),\\ &\dot{x}_2(t)=x_3(t)+g_2(u(t),x_1(t),x_2(t)),\\ &\vdots\\ &\dot{x}_n(t)=f(t,x(t),w(t))+g_n(u(t),x(t)),\\ &y(t)=x_1(t), \end{aligned}\right.\tag{1}

x n + 1 ( t ) ≜ f ( t , x ( t ) , w ( t ) ) (2) x_{n+1}(t)\triangleq f(t,x(t),w(t))\tag{2}

{ x ^ ˙ 1 ( t ) = x ^ 2 ( t ) + 1 r n − 1 h 1 ( r n ( y ( t ) − x ^ 1 ( t ) ) ) + g 1 ( u ( t ) , x ^ 1 ( t ) ) , ⋮ x ^ ˙ n ( t ) = x ^ n + 1 ( t ) + h n ( r n ( y ( t ) − x ^ 1 ( t ) ) ) + g n ( u ( t ) , x ^ 1 ( t ) , … , x ^ n ( t ) ) , x ^ ˙ n + 1 ( t ) = r h n + 1 ( r n ( y ( t ) − x ^ 1 ( t ) ) ) , (3) \left\{\begin{aligned} &\dot{\hat{x}}_1(t)=\hat{x}_2(t)+\frac{1}{r^{n-1}}h_1(r^n(y(t)-\hat{x}_1(t)))+g_1(u(t),\hat{x}_1(t)),\\ &\vdots\\ &\dot{\hat{x}}_n(t)=\hat{x}_{n+1}(t)+h_n(r^n(y(t)-\hat{x}_1(t)))+g_n(u(t),\hat{x}_1(t),\ldots,\hat{x}_n(t)),\\ &\dot{\hat{x}}_{n+1}(t)=rh_{n+1}(r^n(y(t)-\hat{x}_1(t))), \end{aligned}\right.\tag{3}

∣ g i ( u , v 1 , … , v i ) − g i ( u , v ~ 1 , … , v ~ i ) ∣ ≤ Γ ( u ) ∥ ( v 1 − v ~ 1 , … , v i − v ~ i ) ∥ θ i ,      Γ ∈ C ( R m , R ) , (4) \vert g_i(u,v_1,\ldots,v_i)-g_i(u,\tilde{v}_1,\ldots,\tilde{v}_i)\vert\leq \varGamma(u)\Vert(v_1-\tilde{v}_1,\ldots,v_i-\tilde{v}_i)\Vert^{\theta_i},\;\;\varGamma\in C(\mathbb{R}^m,\mathbb{R}),\tag{4}

∣ f ( t , x , w ) ∣ + ∣ ∂ f ( t , x , w ) ∂ t ∣ + ∣ ∂ f ( t , x , w ) ∂ x i ∣ + ∣ ∂ f ( t , x , w ) ∂ w ∣ ≤ ϖ 1 ( x ) + ϖ 1 ( w ) , \vert f(t,x,w)\vert+\left\vert\frac{\partial f(t,x,w)}{\partial t}\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial x_i}\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial w}\right\vert\leq\varpi_1(x)+\varpi_1(w),

1. ∑ i = 1 n ( v i + 1 − h i ( v 1 ) ) ∂ V ( v ) v i − h n + 1 ( v 1 ) ∂ V ( v ) v n ≤ − W ( v ) \sum\limits_{i=1}^n(v_{i+1}-h_i(v_1))\frac{\partial \mathcal{V}(v)}{\mathcal{v}_i}-h_{n+1}(v_1)\frac{\partial \mathcal{V}(v)}{\mathcal{v}_n}\leq -\mathcal{W}(v) , ∀ v = ( v 1 , v 2 , … , v n + 1 ) ∈ R n + 1 \forall v=(v_1,v_2,\ldots,v_{n+1})\in \mathbb{R}^{n+1} ;
2. max ⁡ i = 1 , … , n { ∥ ( v 1 , … , v i ) ∥ θ i ∣ ∂ ( V ) ( v ) ∂ v i ∣ } ≤ N W ( v ) \max\limits_{i=1,\ldots,n}\left\{\Vert(v_1,\ldots,v_i)\Vert^{\theta_i}\left\vert\frac{\partial \mathcal(V)(v)}{\partial v_i}\right\vert\right\}\leq N\mathcal{W}(v) , ∣ ∂ V ( v ) ∂ v n + 1 ∣ ≤ N W ( v ) \left\vert\frac{\partial\mathcal{V}(v)}{\partial v_{n+1}}\right\vert\leq N\mathcal{W}(v) , v ∈ R n + 1 v\in\mathbb{R}^{n+1} , ∥ v ∥ ≥ R \Vert v\Vert\geq R .

• 假设1涉及到下三角系统特有的项 g i g_i ，因此和博客1中没有对应的假设；
• 假设2和博客1中的假设1类似，是关于扩张状态界的假设；
• 假设3和博客1中的假设2类似，是关于外部干扰的假设；
• 假设4和博客1中的假设3或者博客2中的假设4类似，是关于Lyapunov函数的假设；

∣ x ^ i ( t ) − x i ( t ) ∣ < σ ,    ∀ t > t r ,    r > r 0 ,    i = 1 , 2 , … , n + 1 , (5) \vert \hat{x}_i(t)-x_i(t)\vert <\sigma,\;\forall t>t_r,\;r>r_0,\;i=1,2,\ldots,n+1,\tag{5}

η i ( t ) = r n + 1 − i ( x i ( t ) − x ^ i ( t ) ) ,    i = 1 , 2 , … , n + 1 , η ( t ) = ( η 1 ( t ) , … , η n + 1 ( t ) ) T , (6) \begin{aligned} &\eta_i(t)=r^{n+1-i}(x_i(t)-\hat{x}_i(t)),\;i=1,2,\ldots,n+1,\\ &\eta(t)=(\eta_1(t),\ldots,\eta_{n+1}(t))^\mathrm{T}, \end{aligned}\tag{6}

{ η ˙ 1 ( t ) = r ( η 2 ( t ) − h 1 ( η 1 ( t ) ) ) + r n ( g 1 ( u ( t ) , x 1 ( t ) ) − g 1 ( u ( t ) , x ^ 1 ( t ) ) ) , ⋮ η ˙ n ( t ) = r ( η n + 1 ( t ) − h n ( η 1 ( t ) ) ) + r ( g n ( u ( t ) , x ) , … , x n ( t ) ) − g n ( u ( t ) , x ^ 1 ( t ) , … , x ^ n ( t ) ) ) , η ˙ n + 1 ( t ; r ) = − r h n + 1 ( η 1 ( t ) ) + x ˙ n + 1 ( t ) . (7) \left\{\begin{aligned} &\dot{\eta}_1(t)=r(\eta_2(t)-h_1(\eta_1(t)))+r^n(g_1(u(t),x_1(t))-g_1(u(t),\hat{x}_1(t))),\\ &\vdots\\ &\dot{\eta}_n(t)=r(\eta_{n+1}(t)-h_n(\eta_1(t)))+r(g_n(u(t),x),\ldots,\\ &\qquad\qquad x_n(t))-g_n(u(t),\hat{x}_1(t),\ldots,\hat{x}_n(t))),\\ &\dot{\eta}_{n+1}(t;r)=-rh_{n+1}(\eta_1(t))+\dot{x}_{n+1}(t). \end{aligned}\right.\tag{7}

r n + 1 − i ∣ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) − g i ( u ( t ) , x ^ 1 ( t ) , … , x ^ i ( t ) ) ∣ ≤ Γ ( u ( t ) ) r n + 1 − i ∥ η 1 ( t ) / r n , … , η i ( t ) / r n + 1 − i ∥ θ i ≤ Γ ( u ( t ) ) r ( n + 1 − i ) ( 1 − θ i ) ∥ η 1 ( t ) / r n , … , η i ( t ) / r n + 1 − i ∥ θ i ,    ∀ r > 1. (8) \begin{aligned} r^{n+1-i}&\vert g_i(u(t),x_1(t),\ldots,x_i(t))-g_i(u(t),\hat{x}_1(t),\ldots,\hat{x}_i(t))\vert\\ &\leq\varGamma(u(t))r^{n+1-i} \Vert\eta_1(t)/r^n,\ldots,\eta_i(t)/r^{n+1-i}\Vert ^{\theta_i} \\ &\leq \varGamma(u(t))r^{(n+1-i)(1-\theta_i)}\Vert\eta_1(t)/r^n,\ldots,\eta_i(t)/r^{n+1-i}\Vert ^{\theta_i},\;\forall r>1. \end{aligned}\tag{8}

∣ x ˙ n + 1 ( t ) ∣ ≤ ( ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ) ( 1 + w ˙ ( t ) + ∑ i = 1 n − 1 ∣ x i + 1 ( t ) ∣ + ∑ i = 1 n ∣ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) ∣ + ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ) . (9) \begin{aligned} \vert\dot{x}_{n+1}(t)\vert \leq& (\varpi_1(x(t))+\varpi_2(w(t)))\left(1+\dot{w}(t)+\sum_{i=1}^{n-1}\vert x_{i+1}(t)\vert\right.\\ &\left. +\sum_{i=1}^n\vert g_i(u(t),x_1(t),\ldots,x_i(t))\vert+\varpi_1(x(t))+\varpi_2(w(t))\right). \end{aligned}\tag{9}
V : R n + 1 → R \mathcal{V}:\mathbb{R}^{n+1}\rightarrow\mathbb{R} 为满足假设4的Lyapunov函数， V ( η ( t ) ) \mathcal{V}(\eta(t)) 沿系统(7)的导数为

d V d t ∣ a l o n g    ( 7 ) = ∑ i = 1 n ( r ( η i + 1 ( t ) − h i ( η 1 ( t ) ) ) + r n + 1 − i [ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) − g i ( u ( t ) , x ^ 1 ( t ) , … , x ^ i ( t ) ) ] ) ∂ V ( η ( t ) ) ∂ η i + ( − r h n + 1 ( η 1 ( t ) ) ) + x ˙ n + 1 ( t ) ) ∂ V ( η ( t ) ) ∂ η n + 1 . (10) \begin{aligned} \left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}=&\sum_{i=1}^n\left(r(\eta_{i+1}(t)-h_i(\eta_1(t)))+r^{n+1-i}[g_i(u(t),x_1(t),\ldots,x_i(t))\right.\\ &\left.-g_i(u(t),\hat{x}_1(t),\ldots,\hat{x}_i(t))] \right)\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}+(-rh_{n+1}(\eta_1(t)))\\ &+\dot{x}_{n+1}(t))\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_{n+1}}. \end{aligned}\tag{10}

d V d t ∣ a l o n g    ( 7 ) ≤ − r W ( η ( t ) ) + ∣ x ˙ n + 1 ( t ) ∣ ∣ ∂ V ( η ( t ) ) ∂ η n + 1 ∣ + ∑ i = 1 n Γ ( u ( t ) ) r ( n + 1 − i ) ( 1 − θ i ) ∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ . (11) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)} \leq&-r\mathcal{W}(\eta(t))+\vert \dot{x}_{n+1}(t)\vert\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_{n+1}}\right\vert\\ &+\sum_{i=1}^n\varGamma(u(t))r^{(n+1-i)(1-\theta_i)}\Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert.\end{aligned}\tag{11}

∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ ≤ N ( W ) ( η ( t ) ) , ∣ ∂ V ( η ( t ) ) ∂ η n + 1 ∣ ≤ N W ( η ( t ) ) (12) \begin{aligned} &\Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert\leq N\mathcal(W)(\eta(t)),\\ &\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_{n+1}}\right\vert\leq N\mathcal{W}(\eta(t)) \end{aligned}\tag{12}

Λ = max ⁡ 1 ≤ i ≤ n ( n + 1 − i ) ( 1 − θ i ) ,    N 11 = sup ⁡ t ∈ [ 0 , ∞ ) n N Γ ( u ( t ) ) , N 12 = N sup ⁡ t ∈ [ 0 , ∞ ) [ ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ] ( 1 + ∣ w ˙ ( t ) ∣ + ∑ i = 1 n ∣ x i + 1 ( t ) ∣ + ∑ i = 1 n ∣ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) ∣ + ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ) (13) \begin{aligned} \varLambda=&\max_{1\leq i\leq n}(n+1-i)(1-\theta_i),\;N_{11}=\sup_{t\in[0,\infty)}nN\varGamma(u(t)),\\ N_{12}=&N\sup_{t\in[0,\infty)}[\varpi_1(x(t))+\varpi_2(w(t))] \left(1+\vert\dot{w}(t)\vert+\sum_{i=1}^n\vert x_{i+1}(t)\vert\right.\\ &\left.+\sum_{i=1}^n\vert g_i(u(t),x_1(t),\ldots,x_i(t))\vert+\varpi_1(x(t))+\varpi_2(w(t))\right) \end{aligned}\tag{13}

∣ x ˙ n + 1 ( t ) ∣ = ∣ ∂ f ( t , x , w ) ∂ t + ∂ f ( t , x , w ) ∂ x i x ˙ i + ∂ f ( t , x , w ) ∂ w w ˙ i ∣ ≤ ∣ ∂ f ( t , x , w ) ∂ t ∣ + ∣ ∂ f ( t , x , w ) ∂ x i x ˙ i ∣ + ∣ ∂ f ( t , x , w ) ∂ w w ˙ i ∣ ≤ ϖ 1 ( x ) + ϖ 1 ( w ) + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ∑ i = 1 n − 1 ( ∣ x i + 1 + ∣ g i ∣ ) + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ( ∣ g n ∣ + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ) + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ∣ w ˙ ∣ \begin{aligned} \vert \dot{x}_{n+1}(t)\vert=&\left\vert\frac{\partial f(t,x,w)}{\partial t}+ \frac{\partial f(t,x,w)}{\partial x_i}\dot{x}_i+ \frac{\partial f(t,x,w)}{\partial w}\dot{w}_i\right\vert\\ \leq&\left\vert\frac{\partial f(t,x,w)}{\partial t}\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial x_i}\dot{x}_i\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial w}\dot{w}_i\right\vert\\ \leq&\varpi_1(x)+\varpi_1(w)+(\varpi_1(x)+\varpi_1(w))\sum_{i=1}^{n-1}(\vert x_{i+1}+\vert g_i\vert)\\&+(\varpi_1(x)+\varpi_1(w))(\vert g_n\vert+(\varpi_1(x)+\varpi_1(w)))+(\varpi_1(x)+\varpi_1(w))\vert\dot{w}\vert \end{aligned}

∑ i = 1 n Γ ( u ( t ) ) r ( n + 1 − i ) ( 1 − θ i ) ∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ ≤ n Γ ( u ( t ) ) r Λ ∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ \begin{aligned} &\sum_{i=1}^n\varGamma(u(t))r^{(n+1-i)(1-\theta_i)}\Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert\\ \leq& n\varGamma(u(t))r^\varLambda \Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert \end{aligned}

d V d t ∣ a l o n g    ( 7 ) ≤ − ( r − N 11 r Λ − N 12 ) W ( η ( t ) ) . (14) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -(r-N_{11}r^\varLambda-N_{12})\mathcal{W}(\eta(t)).\end{aligned}\tag{14}

κ 1 ( ∥ v ∥ ) ≤ V ( v ) ≤ κ 2 ( ∥ v ∥ ) , κ 3 ( ∥ v ∥ ) ≤ W ( v ) ≤ κ 4 ( ∥ v ∥ ) ,      ∀ v ∈ R n + 1 (15) \begin{aligned} &\kappa_1(\Vert v\Vert)\leq\mathcal{V}(v)\leq\kappa_2(\Vert v\Vert),\\ &\kappa_3(\Vert v\Vert)\leq\mathcal{W}(v)\leq\kappa_4(\Vert v\Vert),\;\;\forall v\in\mathbb{R}^{n+1} \end{aligned}\tag{15}
V ( η ( r ; t ) ) ≥ κ 2 ( R ) \mathcal{V}(\eta(r;t))\geq\kappa_2(R) ，则 ∥ η ( t ) ∥ ≥ κ 2 − 1 ( V ( η ( r ; t ) ) ) ≥ R \Vert\eta(t)\Vert\geq\kappa_2^{-1}(\mathcal{V}(\eta(r;t)))\geq R ，且 W ( η ( t ) ) ≥ κ 3 ( ∥ η ( t ) ∥ ) ≥ κ 3 ( R ) \mathcal{W}(\eta(t))\geq\kappa_3(\Vert\eta(t)\Vert)\geq\kappa_3(R) 。令
r > r 1 ≜ max ⁡ { 1 , ( 3 N 11 ) 1 / ( 1 − Λ ) , ( N 12 / N 11 ) 1 / Λ } , r>r_1\triangleq\max\{1,(3N_{11})^{1/(1-\varLambda)},(N_{12}/N_{11})^{1/\varLambda}\},

d V d t ∣ a l o n g    ( 7 ) ≤ − N 11 κ 3 ( R ) r Λ < 0 , ∀ r > r 1 ,    ∥ η ( t ) ∥ ≥ R . (16) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -N_{11}\kappa_3(R)r^\varLambda<0,\forall r>r_1,\;\Vert\eta(t)\Vert\geq R. \end{aligned}\tag{16}

d V d t ∣ a l o n g    ( 7 ) ≤ − r W ( η ( t ) ) + M 11 r Λ + M 12 , ∀ r > r 1 ,    t > t r 1 . (17) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -r\mathcal{W}(\eta(t))+M_{11}r^\varLambda+M_{12},\forall r>r_1,\;t>t_{r_1}.\end{aligned}\tag{17}

M 11 = sup ⁡ t ∈ [ 0 , ∞ ) Γ ( u ( t ) ) ∑ i = 1 n sup ⁡ v ∈ { v ∈ R n + 1 : V ( v ) ≤ κ 2 ( R ) } ∥ v ∥ i θ ∥ ∂ V ( v ) ∂ v ∥ , M 12 = N 12 N sup ⁡ v ∈ { v ∈ R n + 1 : V ( v ) ≤ κ 2 ( R ) } ∣ ∂ V ( v ) ∂ v n + 1 ∣ \begin{aligned} &M_{11}=\sup_{t\in[0,\infty)}\varGamma(u(t))\sum_{i=1}^n\sup_{v\in\{v\in\mathbb{R}^{n+1}:\mathcal{V}(v)\leq\kappa_2(R)\}}\Vert v\Vert^\theta_i\left\Vert\frac{\partial \mathcal{V}(v)}{\partial v}\right\Vert,\\ &M_{12}=\frac{N_{12}}{N}\sup_{v\in\{v\in\mathbb{R}^{n+1}:\mathcal{V}(v)\leq\kappa_2(R)\}}\left\vert\frac{\partial \mathcal{V}(v)}{\partial v_{n+1}}\right\vert \end{aligned}

r > r 0 ≜ max ⁡ { r 1 , ( 3 M 11 κ 3 ( σ ) ) 1 1 − Λ , ( M 12 M 11 1 Λ ) } , r>r_0\triangleq \max\left\{r_1,\left(\frac{3M_{11}}{\kappa_3(\sigma)}\right)^{\frac{1}{1-\varLambda}},\left(\frac{M_{12}}{M_{11}}^\frac{1}{\varLambda}\right)\right\},
∥ η ( t ) ∥ ≥ σ \Vert\eta(t)\Vert\geq\sigma ，则 W ( η ( t ) ) ≥ κ 3 ( σ ) W(\eta(t))\geq\kappa_3(\sigma) ，此时结合式(17)有
d V d t ∣ a l o n g    ( 7 ) ≤ − r κ 3 ( σ ) + 2 M 11 r Λ ≤ − M 11 r Λ < 0 (18) \left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -r\kappa_3(\sigma)+2M_{11}r^\varLambda\leq-M_{11}r^\varLambda<0\tag{18}

∣ x i ( t ) − x ^ i ( t ) ∣ = ∣ η i ( t ) ∣ r n + 1 − i ≤ σ ,    i = 1 , 2 , … , n + 1. (19) \vert x_i(t)-\hat{x}_i(t)\vert=\frac{\vert\eta_i(t)\vert}{r^{n+1-i}}\leq\sigma,\;i=1,2,\ldots,n+1.\tag{19}

[1]Guo B Z, Zhao Z. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6): 420-430.

[2]Zhao Z L, Guo B Z. Extended state observer for uncertain lower triangular nonlinear systems[J]. Systems & Control Letters, 2015, 85: 100-108.

[3]Khalil H K. Nonlinear systems[M]. Prentice-Hall, 2001.

• 5
点赞
• 3
评论
• 18
收藏
• 一键三连
• 扫一扫，分享海报

03-12
03-18 1万+
08-25 3012
09-10 935
03-25
10-03 1931
08-01 7060
09-04 271