自抗扰控制中的扩张状态观测器收敛性分析3

控制类笔记总结 专栏收录该内容
11 篇文章 0 订阅

前面两篇博客里我们分析了文献[1]在关于Lyapunov函数的两种假设条件下证明积分形式系统扩张状态观测器(ESO)收敛性的套路,文献[1]还用齐次性说明了后一种假设条件的适应性,以表明有一定的应用性。仿照文献[1]的套路,根据自己大论文的研究方向加一个所谓的工程应用背景(其实还是一个微分方程模型),只要模型形式能够想办法改写成积分形式,然后控制器设计上再做点小改动,核心思想还是在Lyapunov函数上做文章,然后推导出一个所谓的存在性收敛条件,就是一篇自己的论文了,投个一般的SCI期刊(对理论要求不强的)还是比较有希望的,有毕业压力的同学可以考虑这个方法。总之就是,借助文献[1]的套路,既能用一坨数学公式唬住审稿人,增加中稿概率,又不增加实际难度,不需要花费太多脑力,何乐而不为?

同样地,其实可以结合自己的研究方向找上几篇理论研究的论文(最好是近几年的),打印出来仔细和反复研读,弄明白作者的套路,须知任何论文都是有套路的,特别是高产作者的论文,然后就可以依葫芦画瓢写自己的论文了。当然,找的论文一定要是自己能看明白的,这里说的看明白不是说能够一下子把原文的公式推导看明白,而是说能够看明白作者证明的思路,弄明白思路后其实很容易看明白公式推导,毕竟复杂公式的外表背后往往是简单而直接的思想。然后就能开始自己的公式推导了,自己的公式推导不一定要和原文一样(最好外表看起来不一样,也就是换汤不换药),只需要吸收其套路,结合自己的应用背景做一些改动更好。从这个角度讲,如果导师对自己是放养状态的话,用这种方式凑齐毕业所需的小论文是不难的。

言归正传,文献[2]是对文献[1]的进一步扩展,分析了下三角系统的ESO收敛性,其中的套路一样可以借鉴,这里对其进行介绍,考虑到文献[2]内容和前面两篇博客没有多大关系,公式也重新编号。

首先看看文献[2]中所谓的下三角系统是何方神圣:
{ x ˙ 1 ( t ) = x 2 ( t ) + g 1 ( u ( t ) , x 1 ( t ) ) , x ˙ 2 ( t ) = x 3 ( t ) + g 2 ( u ( t ) , x 1 ( t ) , x 2 ( t ) ) , ⋮ x ˙ n ( t ) = f ( t , x ( t ) , w ( t ) ) + g n ( u ( t ) , x ( t ) ) , y ( t ) = x 1 ( t ) , (1) \left\{\begin{aligned} &\dot{x}_1(t)=x_2(t)+g_1(u(t),x_1(t)),\\ &\dot{x}_2(t)=x_3(t)+g_2(u(t),x_1(t),x_2(t)),\\ &\vdots\\ &\dot{x}_n(t)=f(t,x(t),w(t))+g_n(u(t),x(t)),\\ &y(t)=x_1(t), \end{aligned}\right.\tag{1} x˙1(t)=x2(t)+g1(u(t),x1(t)),x˙2(t)=x3(t)+g2(u(t),x1(t),x2(t)),x˙n(t)=f(t,x(t),w(t))+gn(u(t),x(t)),y(t)=x1(t),(1)

其中, g i ( ⋅ ) ∈ C ( R i + m , R ) g_i(\cdot)\in C(\mathbb{R}^{i+m},\mathbb{R}) gi()C(Ri+m,R)为已知非线性函数, f ( t , ⋅ ) ∈ C ( R n + s + 1 , R ) f(t,\cdot)\in C(\mathbb{R}^{n+s+1},\mathbb{R}) f(t,)C(Rn+s+1,R)为未知非线性函数, x ( t ) = ( x 1 ( t ) , x 2 ( t ) , … , x n ( t ) ) x(t)=(x_1(t),x_2(t),\ldots,x_n(t)) x(t)=(x1(t),x2(t),,xn(t))为系统状态, u ∈ R m u\in\mathbb{R}^m uRm为控制输入, y ( t ) = x 1 ( t ) y(t)=x_1(t) y(t)=x1(t)为输出, w ∈ C ( R ‾ + , R ) w\in C(\overline{\mathbb{R}}^+,\mathbb{R}) wC(R+,R)为外部干扰。可见这里所谓的下三角系统其实就是文献[1]中的积分形式系统加上一些摄动项,准确来说,对于每一级状态的微分中对应的 g i ( ⋅ ) g_i(\cdot) gi(),其自变量的最后一个分量只列写到该状态本身。系统(1)可以认为是文献[1]套路的延续。类似地,定义扩张状态
x n + 1 ( t ) ≜ f ( t , x ( t ) , w ( t ) ) (2) x_{n+1}(t)\triangleq f(t,x(t),w(t))\tag{2} xn+1(t)f(t,x(t),w(t))(2)
然后给出ESO的形式:
{ x ^ ˙ 1 ( t ) = x ^ 2 ( t ) + 1 r n − 1 h 1 ( r n ( y ( t ) − x ^ 1 ( t ) ) ) + g 1 ( u ( t ) , x ^ 1 ( t ) ) , ⋮ x ^ ˙ n ( t ) = x ^ n + 1 ( t ) + h n ( r n ( y ( t ) − x ^ 1 ( t ) ) ) + g n ( u ( t ) , x ^ 1 ( t ) , … , x ^ n ( t ) ) , x ^ ˙ n + 1 ( t ) = r h n + 1 ( r n ( y ( t ) − x ^ 1 ( t ) ) ) , (3) \left\{\begin{aligned} &\dot{\hat{x}}_1(t)=\hat{x}_2(t)+\frac{1}{r^{n-1}}h_1(r^n(y(t)-\hat{x}_1(t)))+g_1(u(t),\hat{x}_1(t)),\\ &\vdots\\ &\dot{\hat{x}}_n(t)=\hat{x}_{n+1}(t)+h_n(r^n(y(t)-\hat{x}_1(t)))+g_n(u(t),\hat{x}_1(t),\ldots,\hat{x}_n(t)),\\ &\dot{\hat{x}}_{n+1}(t)=rh_{n+1}(r^n(y(t)-\hat{x}_1(t))), \end{aligned}\right.\tag{3} x^˙1(t)=x^2(t)+rn11h1(rn(y(t)x^1(t)))+g1(u(t),x^1(t)),x^˙n(t)=x^n+1(t)+hn(rn(y(t)x^1(t)))+gn(u(t),x^1(t),,x^n(t)),x^˙n+1(t)=rhn+1(rn(y(t)x^1(t))),(3)
其中, r r r为高增益参数(其实就是文献[1]中 ε \varepsilon ε的倒数,即 r = 1 ε r=\frac{1}{\varepsilon} r=ε1), h i ∈ C ( R , R ) h_i\in C(\mathbb{R},\mathbb{R}) hiC(R,R) i = 1 , 2 , … , n + 1 i=1,2,\ldots,n+1 i=1,2,,n+1为设计函数。为了推导出ESO的收敛性,和文献[1]类似,同样需要一些假设:

假设1 g i : R i + m → R g_i:\mathbb{R}^{i+m}\rightarrow\mathbb{R} gi:Ri+mR满足
∣ g i ( u , v 1 , … , v i ) − g i ( u , v ~ 1 , … , v ~ i ) ∣ ≤ Γ ( u ) ∥ ( v 1 − v ~ 1 , … , v i − v ~ i ) ∥ θ i ,      Γ ∈ C ( R m , R ) , (4) \vert g_i(u,v_1,\ldots,v_i)-g_i(u,\tilde{v}_1,\ldots,\tilde{v}_i)\vert\leq \varGamma(u)\Vert(v_1-\tilde{v}_1,\ldots,v_i-\tilde{v}_i)\Vert^{\theta_i},\;\;\varGamma\in C(\mathbb{R}^m,\mathbb{R}),\tag{4} gi(u,v1,,vi)gi(u,v~1,,v~i)Γ(u)(v1v~1,,viv~i)θi,ΓC(Rm,R),(4)

其中, θ i ∈ ( ( n − i ) / ( n + 1 − i ) , 1 ] \theta_i\in((n-i)/(n+1-i),1] θi((ni)/(n+1i),1], i = 1 , 2 , … , n i=1,2,\ldots,n i=1,2,,n.

假设2 f ∈ C 1 ( R n + 2 , R ) f\in C^1(\mathbb{R}^{n+2},\mathbb{R}) fC1(Rn+2,R)满足
∣ f ( t , x , w ) ∣ + ∣ ∂ f ( t , x , w ) ∂ t ∣ + ∣ ∂ f ( t , x , w ) ∂ x i ∣ + ∣ ∂ f ( t , x , w ) ∂ w ∣ ≤ ϖ 1 ( x ) + ϖ 1 ( w ) , \vert f(t,x,w)\vert+\left\vert\frac{\partial f(t,x,w)}{\partial t}\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial x_i}\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial w}\right\vert\leq\varpi_1(x)+\varpi_1(w), f(t,x,w)+tf(t,x,w)+xif(t,x,w)+wf(t,x,w)ϖ1(x)+ϖ1(w),
其中, i = 1 , 2 , … , n i=1,2,\ldots,n i=1,2,,n ϖ 1 ∈ C ( R n , R ‾ + ) \varpi_1\in C(\mathbb{R}^n,\overline{\mathbb{R}}^+) ϖ1C(Rn,R+) ϖ 2 ∈ C ( R n , R ‾ + ) \varpi_2\in C(\mathbb{R}^n,\overline{\mathbb{R}}^+) ϖ2C(Rn,R+)为两个已知函数。

假设3 sup ⁡ t ∈ [ 0 , ∞ ) ( ∣ w ( t ) ∣ + ∣ w ˙ ( t ) ∣ + ∥ u ( t ) ∥ ) < ∞ \sup\limits_{t\in[0,\infty)}(\vert w(t)\vert+\vert\dot{w}(t)\vert+\Vert u(t)\Vert)<\infty t[0,)sup(w(t)+w˙(t)+u(t))<.

假设4:所有 h i ∈ C ( R , R ) h_i\in C(\mathbb{R},\mathbb{R}) hiC(R,R)满足如下Lyapunov条件:存在正常数 R , N > 0 R,N>0 R,N>0和连续径向无界的正定函数 V , W ∈ C ( R n + 1 , R + ) \mathcal{V},\mathcal{W}\in C(\mathbb{R}^{n+1},\mathbb{R}^+) V,WC(Rn+1,R+)使得

  1. ∑ i = 1 n ( v i + 1 − h i ( v 1 ) ) ∂ V ( v ) v i − h n + 1 ( v 1 ) ∂ V ( v ) v n ≤ − W ( v ) \sum\limits_{i=1}^n(v_{i+1}-h_i(v_1))\frac{\partial \mathcal{V}(v)}{\mathcal{v}_i}-h_{n+1}(v_1)\frac{\partial \mathcal{V}(v)}{\mathcal{v}_n}\leq -\mathcal{W}(v) i=1n(vi+1hi(v1))viV(v)hn+1(v1)vnV(v)W(v), ∀ v = ( v 1 , v 2 , … , v n + 1 ) ∈ R n + 1 \forall v=(v_1,v_2,\ldots,v_{n+1})\in \mathbb{R}^{n+1} v=(v1,v2,,vn+1)Rn+1;
  2. max ⁡ i = 1 , … , n { ∥ ( v 1 , … , v i ) ∥ θ i ∣ ∂ ( V ) ( v ) ∂ v i ∣ } ≤ N W ( v ) \max\limits_{i=1,\ldots,n}\left\{\Vert(v_1,\ldots,v_i)\Vert^{\theta_i}\left\vert\frac{\partial \mathcal(V)(v)}{\partial v_i}\right\vert\right\}\leq N\mathcal{W}(v) i=1,,nmax{(v1,,vi)θivi(V)(v)}NW(v), ∣ ∂ V ( v ) ∂ v n + 1 ∣ ≤ N W ( v ) \left\vert\frac{\partial\mathcal{V}(v)}{\partial v_{n+1}}\right\vert\leq N\mathcal{W}(v) vn+1V(v)NW(v), v ∈ R n + 1 v\in\mathbb{R}^{n+1} vRn+1, ∥ v ∥ ≥ R \Vert v\Vert\geq R vR.

我们对比一下这4个假设和博客1以及博客2中的假设条件,可以发现:

  • 假设1涉及到下三角系统特有的项 g i g_i gi,因此和博客1中没有对应的假设;
  • 假设2和博客1中的假设1类似,是关于扩张状态界的假设;
  • 假设3和博客1中的假设2类似,是关于外部干扰的假设;
  • 假设4和博客1中的假设3或者博客2中的假设4类似,是关于Lyapunov函数的假设;

可见大部分论文的创新不是一蹴而就,总是在之前的工作上修修补补,不然怎么形成数量呢?对于假设1,这里用了一个所谓的Hölder连续性条件来唬人,其实并不改变后面的证明实质,而且当 θ i = 1 \theta_i=1 θi=1时就是我们在高等数学课上多次见到的Lipschitz条件,所以这里就可以直接认为假设1实际上认定了 g i ( ⋅ ) g_i(\cdot) gi()的某种连续性。假设1-4也都是为了后面利用Lyapunov函数证明收敛性方面而作出的,也就是说,先有证明,后有假设。然后就有下面的定理:

定理1:若假设1-4成立,系统(1)的解全局有界,则ESO(3)的状态实际收敛于系统(1)的状态和扩张状态:对任意 σ > 0 \sigma>0 σ>0,存在正常数 r 0 > 0 r_0>0 r0>0使得
∣ x ^ i ( t ) − x i ( t ) ∣ < σ ,    ∀ t > t r ,    r > r 0 ,    i = 1 , 2 , … , n + 1 , (5) \vert \hat{x}_i(t)-x_i(t)\vert <\sigma,\;\forall t>t_r,\;r>r_0,\;i=1,2,\ldots,n+1,\tag{5} x^i(t)xi(t)<σ,t>tr,r>r0,i=1,2,,n+1,(5)
其中, t r t_r tr为与 r r r相关的常数。

证明:定理1的结论和博客2中的定理有点像,只不过这里把之前用的 ε \varepsilon ε换成了 r r r,但不改变问题的实质。我们可以看到,尽管这里是研究所谓的下三角系统,但是可以看到,设计的ESO有什么区别呢?无法是你原系统(1)有特有项 g i g_i gi,我ESO(3)里面也照样给你来一个特有项 g i g_i gi,只不过ESO里面的 g i g_i gi自变量中状态取估计值,后果无法是ESO估计误差里面多了一些摄动项,没关系,结合文献[1]的套路,一样用Lyapunov函数把这些摄动项搞定,而为了搞定这些项,就有了前面的4个假设,这是定理证明的主要思路。

同样利用与文献[1]类似的坐标变换
η i ( t ) = r n + 1 − i ( x i ( t ) − x ^ i ( t ) ) ,    i = 1 , 2 , … , n + 1 , η ( t ) = ( η 1 ( t ) , … , η n + 1 ( t ) ) T , (6) \begin{aligned} &\eta_i(t)=r^{n+1-i}(x_i(t)-\hat{x}_i(t)),\;i=1,2,\ldots,n+1,\\ &\eta(t)=(\eta_1(t),\ldots,\eta_{n+1}(t))^\mathrm{T}, \end{aligned}\tag{6} ηi(t)=rn+1i(xi(t)x^i(t)),i=1,2,,n+1,η(t)=(η1(t),,ηn+1(t))T,(6)
其中, x i ( t ) x_i(t) xi(t)为系统(1)的解, x ^ i ( t ) \hat{x}_i(t) x^i(t)为ESO(3)的解,从而有
{ η ˙ 1 ( t ) = r ( η 2 ( t ) − h 1 ( η 1 ( t ) ) ) + r n ( g 1 ( u ( t ) , x 1 ( t ) ) − g 1 ( u ( t ) , x ^ 1 ( t ) ) ) , ⋮ η ˙ n ( t ) = r ( η n + 1 ( t ) − h n ( η 1 ( t ) ) ) + r ( g n ( u ( t ) , x ) , … , x n ( t ) ) − g n ( u ( t ) , x ^ 1 ( t ) , … , x ^ n ( t ) ) ) , η ˙ n + 1 ( t ; r ) = − r h n + 1 ( η 1 ( t ) ) + x ˙ n + 1 ( t ) . (7) \left\{\begin{aligned} &\dot{\eta}_1(t)=r(\eta_2(t)-h_1(\eta_1(t)))+r^n(g_1(u(t),x_1(t))-g_1(u(t),\hat{x}_1(t))),\\ &\vdots\\ &\dot{\eta}_n(t)=r(\eta_{n+1}(t)-h_n(\eta_1(t)))+r(g_n(u(t),x),\ldots,\\ &\qquad\qquad x_n(t))-g_n(u(t),\hat{x}_1(t),\ldots,\hat{x}_n(t))),\\ &\dot{\eta}_{n+1}(t;r)=-rh_{n+1}(\eta_1(t))+\dot{x}_{n+1}(t). \end{aligned}\right.\tag{7} η˙1(t)=r(η2(t)h1(η1(t)))+rn(g1(u(t),x1(t))g1(u(t),x^1(t))),η˙n(t)=r(ηn+1(t)hn(η1(t)))+r(gn(u(t),x),,xn(t))gn(u(t),x^1(t),,x^n(t))),η˙n+1(t;r)=rhn+1(η1(t))+x˙n+1(t).(7)
下面开始分析摄动项,首先根据假设1,将式(6)代入式(7)可得
r n + 1 − i ∣ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) − g i ( u ( t ) , x ^ 1 ( t ) , … , x ^ i ( t ) ) ∣ ≤ Γ ( u ( t ) ) r n + 1 − i ∥ η 1 ( t ) / r n , … , η i ( t ) / r n + 1 − i ∥ θ i ≤ Γ ( u ( t ) ) r ( n + 1 − i ) ( 1 − θ i ) ∥ η 1 ( t ) / r n , … , η i ( t ) / r n + 1 − i ∥ θ i ,    ∀ r > 1. (8) \begin{aligned} r^{n+1-i}&\vert g_i(u(t),x_1(t),\ldots,x_i(t))-g_i(u(t),\hat{x}_1(t),\ldots,\hat{x}_i(t))\vert\\ &\leq\varGamma(u(t))r^{n+1-i} \Vert\eta_1(t)/r^n,\ldots,\eta_i(t)/r^{n+1-i}\Vert ^{\theta_i} \\ &\leq \varGamma(u(t))r^{(n+1-i)(1-\theta_i)}\Vert\eta_1(t)/r^n,\ldots,\eta_i(t)/r^{n+1-i}\Vert ^{\theta_i},\;\forall r>1. \end{aligned}\tag{8} rn+1igi(u(t),x1(t),,xi(t))gi(u(t),x^1(t),,x^i(t))Γ(u(t))rn+1iη1(t)/rn,,ηi(t)/rn+1iθiΓ(u(t))r(n+1i)(1θi)η1(t)/rn,,ηi(t)/rn+1iθi,r>1.(8)
根据假设2,
∣ x ˙ n + 1 ( t ) ∣ ≤ ( ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ) ( 1 + w ˙ ( t ) + ∑ i = 1 n − 1 ∣ x i + 1 ( t ) ∣ + ∑ i = 1 n ∣ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) ∣ + ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ) . (9) \begin{aligned} \vert\dot{x}_{n+1}(t)\vert \leq& (\varpi_1(x(t))+\varpi_2(w(t)))\left(1+\dot{w}(t)+\sum_{i=1}^{n-1}\vert x_{i+1}(t)\vert\right.\\ &\left. +\sum_{i=1}^n\vert g_i(u(t),x_1(t),\ldots,x_i(t))\vert+\varpi_1(x(t))+\varpi_2(w(t))\right). \end{aligned}\tag{9} x˙n+1(t)(ϖ1(x(t))+ϖ2(w(t)))(1+w˙(t)+i=1n1xi+1(t)+i=1ngi(u(t),x1(t),,xi(t))+ϖ1(x(t))+ϖ2(w(t))).(9)
V : R n + 1 → R \mathcal{V}:\mathbb{R}^{n+1}\rightarrow\mathbb{R} V:Rn+1R为满足假设4的Lyapunov函数, V ( η ( t ) ) \mathcal{V}(\eta(t)) V(η(t))沿系统(7)的导数为

d V d t ∣ a l o n g    ( 7 ) = ∑ i = 1 n ( r ( η i + 1 ( t ) − h i ( η 1 ( t ) ) ) + r n + 1 − i [ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) − g i ( u ( t ) , x ^ 1 ( t ) , … , x ^ i ( t ) ) ] ) ∂ V ( η ( t ) ) ∂ η i + ( − r h n + 1 ( η 1 ( t ) ) ) + x ˙ n + 1 ( t ) ) ∂ V ( η ( t ) ) ∂ η n + 1 . (10) \begin{aligned} \left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}=&\sum_{i=1}^n\left(r(\eta_{i+1}(t)-h_i(\eta_1(t)))+r^{n+1-i}[g_i(u(t),x_1(t),\ldots,x_i(t))\right.\\ &\left.-g_i(u(t),\hat{x}_1(t),\ldots,\hat{x}_i(t))] \right)\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}+(-rh_{n+1}(\eta_1(t)))\\ &+\dot{x}_{n+1}(t))\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_{n+1}}. \end{aligned}\tag{10} dtdValong(7)=i=1n(r(ηi+1(t)hi(η1(t)))+rn+1i[gi(u(t),x1(t),,xi(t))gi(u(t),x^1(t),,x^i(t))])ηiV(η(t))+(rhn+1(η1(t)))+x˙n+1(t))ηn+1V(η(t)).(10)
由假设4的条件1、式(8)和式(9)可得
d V d t ∣ a l o n g    ( 7 ) ≤ − r W ( η ( t ) ) + ∣ x ˙ n + 1 ( t ) ∣ ∣ ∂ V ( η ( t ) ) ∂ η n + 1 ∣ + ∑ i = 1 n Γ ( u ( t ) ) r ( n + 1 − i ) ( 1 − θ i ) ∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ . (11) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)} \leq&-r\mathcal{W}(\eta(t))+\vert \dot{x}_{n+1}(t)\vert\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_{n+1}}\right\vert\\ &+\sum_{i=1}^n\varGamma(u(t))r^{(n+1-i)(1-\theta_i)}\Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert.\end{aligned}\tag{11} dtdValong(7)rW(η(t))+x˙n+1(t)ηn+1V(η(t))+i=1nΓ(u(t))r(n+1i)(1θi)η1(t),,ηi(t)θiηiV(η(t)).(11)
式(11)右端最后两项比较烦人,是证明稳定性的障碍,因此结合前面的假设条件去掉其影响,具体来说,根据假设2和假设4的条件2,当 ∥ η ( t ) ∥ ≥ R \Vert\eta(t)\Vert\geq R η(t)R时有

∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ ≤ N ( W ) ( η ( t ) ) , ∣ ∂ V ( η ( t ) ) ∂ η n + 1 ∣ ≤ N W ( η ( t ) ) (12) \begin{aligned} &\Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert\leq N\mathcal(W)(\eta(t)),\\ &\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_{n+1}}\right\vert\leq N\mathcal{W}(\eta(t)) \end{aligned}\tag{12} η1(t),,ηi(t)θiηiV(η(t))N(W)(η(t)),ηn+1V(η(t))NW(η(t))(12)

Λ = max ⁡ 1 ≤ i ≤ n ( n + 1 − i ) ( 1 − θ i ) ,    N 11 = sup ⁡ t ∈ [ 0 , ∞ ) n N Γ ( u ( t ) ) , N 12 = N sup ⁡ t ∈ [ 0 , ∞ ) [ ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ] ( 1 + ∣ w ˙ ( t ) ∣ + ∑ i = 1 n ∣ x i + 1 ( t ) ∣ + ∑ i = 1 n ∣ g i ( u ( t ) , x 1 ( t ) , … , x i ( t ) ) ∣ + ϖ 1 ( x ( t ) ) + ϖ 2 ( w ( t ) ) ) (13) \begin{aligned} \varLambda=&\max_{1\leq i\leq n}(n+1-i)(1-\theta_i),\;N_{11}=\sup_{t\in[0,\infty)}nN\varGamma(u(t)),\\ N_{12}=&N\sup_{t\in[0,\infty)}[\varpi_1(x(t))+\varpi_2(w(t))] \left(1+\vert\dot{w}(t)\vert+\sum_{i=1}^n\vert x_{i+1}(t)\vert\right.\\ &\left.+\sum_{i=1}^n\vert g_i(u(t),x_1(t),\ldots,x_i(t))\vert+\varpi_1(x(t))+\varpi_2(w(t))\right) \end{aligned}\tag{13} Λ=N12=1inmax(n+1i)(1θi),N11=t[0,)supnNΓ(u(t)),Nt[0,)sup[ϖ1(x(t))+ϖ2(w(t))](1+w˙(t)+i=1nxi+1(t)+i=1ngi(u(t),x1(t),,xi(t))+ϖ1(x(t))+ϖ2(w(t)))(13)
由假设1, Λ ∈ ( 0 , 1 ) \varLambda\in(0,1) Λ(0,1)。由于 w ( t ) w(t) w(t) w ˙ ( t ) \dot{w}(t) w˙(t) u ( t ) u(t) u(t) x ( t ) x(t) x(t)一致有界,因此 N 11 ≤ ∞ N_{11}\leq\infty N11 N 12 ≤ ∞ N_{12}\leq\infty N12。仔细看的话,其实如果 r > 1 r>1 r>1,那么有
∣ x ˙ n + 1 ( t ) ∣ = ∣ ∂ f ( t , x , w ) ∂ t + ∂ f ( t , x , w ) ∂ x i x ˙ i + ∂ f ( t , x , w ) ∂ w w ˙ i ∣ ≤ ∣ ∂ f ( t , x , w ) ∂ t ∣ + ∣ ∂ f ( t , x , w ) ∂ x i x ˙ i ∣ + ∣ ∂ f ( t , x , w ) ∂ w w ˙ i ∣ ≤ ϖ 1 ( x ) + ϖ 1 ( w ) + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ∑ i = 1 n − 1 ( ∣ x i + 1 + ∣ g i ∣ ) + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ( ∣ g n ∣ + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ) + ( ϖ 1 ( x ) + ϖ 1 ( w ) ) ∣ w ˙ ∣ \begin{aligned} \vert \dot{x}_{n+1}(t)\vert=&\left\vert\frac{\partial f(t,x,w)}{\partial t}+ \frac{\partial f(t,x,w)}{\partial x_i}\dot{x}_i+ \frac{\partial f(t,x,w)}{\partial w}\dot{w}_i\right\vert\\ \leq&\left\vert\frac{\partial f(t,x,w)}{\partial t}\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial x_i}\dot{x}_i\right\vert+ \left\vert\frac{\partial f(t,x,w)}{\partial w}\dot{w}_i\right\vert\\ \leq&\varpi_1(x)+\varpi_1(w)+(\varpi_1(x)+\varpi_1(w))\sum_{i=1}^{n-1}(\vert x_{i+1}+\vert g_i\vert)\\&+(\varpi_1(x)+\varpi_1(w))(\vert g_n\vert+(\varpi_1(x)+\varpi_1(w)))+(\varpi_1(x)+\varpi_1(w))\vert\dot{w}\vert \end{aligned} x˙n+1(t)=tf(t,x,w)+xif(t,x,w)x˙i+wf(t,x,w)w˙itf(t,x,w)+xif(t,x,w)x˙i+wf(t,x,w)w˙iϖ1(x)+ϖ1(w)+(ϖ1(x)+ϖ1(w))i=1n1(xi+1+gi)+(ϖ1(x)+ϖ1(w))(gn+(ϖ1(x)+ϖ1(w)))+(ϖ1(x)+ϖ1(w))w˙

∑ i = 1 n Γ ( u ( t ) ) r ( n + 1 − i ) ( 1 − θ i ) ∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ ≤ n Γ ( u ( t ) ) r Λ ∥ η 1 ( t ) , … , η i ( t ) ∥ θ i ∣ ∂ V ( η ( t ) ) ∂ η i ∣ \begin{aligned} &\sum_{i=1}^n\varGamma(u(t))r^{(n+1-i)(1-\theta_i)}\Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert\\ \leq& n\varGamma(u(t))r^\varLambda \Vert\eta_1(t),\ldots,\eta_i(t)\Vert^{\theta_i}\left\vert\frac{\partial\mathcal{V}(\eta(t))}{\partial\eta_i}\right\vert \end{aligned} i=1nΓ(u(t))r(n+1i)(1θi)η1(t),,ηi(t)θiηiV(η(t))nΓ(u(t))rΛη1(t),,ηi(t)θiηiV(η(t))

可见式 N 11 r Λ W ( η ) N_{11}r^\varLambda\mathcal{W}(\eta) N11rΛW(η) N 12 W ( η ) N_{12}\mathcal{W}(\eta) N12W(η)对应式(11)中右端最后两项的界,因此如果 ∥ η ( t ) ∥ ≥ R \Vert\eta(t)\Vert\geq R η(t)R r > 1 r>1 r>1,则有
d V d t ∣ a l o n g    ( 7 ) ≤ − ( r − N 11 r Λ − N 12 ) W ( η ( t ) ) . (14) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -(r-N_{11}r^\varLambda-N_{12})\mathcal{W}(\eta(t)).\end{aligned}\tag{14} dtdValong(7)(rN11rΛN12)W(η(t)).(14)
由于 V ( ⋅ ) \mathcal{V}(\cdot) V() W ( ⋅ ) \mathcal{W}(\cdot) W()径向无界且连续正定,根据文献[3]的引理4.3(在博客2中有介绍)可知存在 K ∞ \mathcal{K}_\infty K类函数 κ i : R ‾ + → R ‾ + ( i = 1 , 2 , 3 , 4 ) \kappa_i:\overline{\mathbb{R}}^+\rightarrow\overline{\mathbb{R}}^+(i=1,2,3,4) κi:R+R+(i=1,2,3,4)使得
κ 1 ( ∥ v ∥ ) ≤ V ( v ) ≤ κ 2 ( ∥ v ∥ ) , κ 3 ( ∥ v ∥ ) ≤ W ( v ) ≤ κ 4 ( ∥ v ∥ ) ,      ∀ v ∈ R n + 1 (15) \begin{aligned} &\kappa_1(\Vert v\Vert)\leq\mathcal{V}(v)\leq\kappa_2(\Vert v\Vert),\\ &\kappa_3(\Vert v\Vert)\leq\mathcal{W}(v)\leq\kappa_4(\Vert v\Vert),\;\;\forall v\in\mathbb{R}^{n+1} \end{aligned}\tag{15} κ1(v)V(v)κ2(v),κ3(v)W(v)κ4(v),vRn+1(15)
V ( η ( r ; t ) ) ≥ κ 2 ( R ) \mathcal{V}(\eta(r;t))\geq\kappa_2(R) V(η(r;t))κ2(R),则 ∥ η ( t ) ∥ ≥ κ 2 − 1 ( V ( η ( r ; t ) ) ) ≥ R \Vert\eta(t)\Vert\geq\kappa_2^{-1}(\mathcal{V}(\eta(r;t)))\geq R η(t)κ21(V(η(r;t)))R,且 W ( η ( t ) ) ≥ κ 3 ( ∥ η ( t ) ∥ ) ≥ κ 3 ( R ) \mathcal{W}(\eta(t))\geq\kappa_3(\Vert\eta(t)\Vert)\geq\kappa_3(R) W(η(t))κ3(η(t))κ3(R)。令
r > r 1 ≜ max ⁡ { 1 , ( 3 N 11 ) 1 / ( 1 − Λ ) , ( N 12 / N 11 ) 1 / Λ } , r>r_1\triangleq\max\{1,(3N_{11})^{1/(1-\varLambda)},(N_{12}/N_{11})^{1/\varLambda}\}, r>r1max{1,(3N11)1/(1Λ),(N12/N11)1/Λ},
则由式(14)可知 V ( η ( t ) ) \mathcal{V(\eta(t))} V(η(t))沿系统(7)的导数满足
d V d t ∣ a l o n g    ( 7 ) ≤ − N 11 κ 3 ( R ) r Λ < 0 , ∀ r > r 1 ,    ∥ η ( t ) ∥ ≥ R . (16) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -N_{11}\kappa_3(R)r^\varLambda<0,\forall r>r_1,\;\Vert\eta(t)\Vert\geq R. \end{aligned}\tag{16} dtdValong(7)N11κ3(R)rΛ<0,r>r1,η(t)R.(16)
因此,对每一个 r > r 1 r>r_1 r>r1,均存在与 r r r相关的常数 t r 1 t_{r_1} tr1使得当 t > t r 1 t>t_{r_1} t>tr1时, V ( η ( t ) ) ≤ κ 2 ( R ) \mathcal{V}(\eta(t))\leq\kappa_2(R) V(η(t))κ2(R).

到目前为止,证明了 V ( η ( t ) ) \mathcal{V(\eta(t))} V(η(t))的有界性,进一步利用式(11)可得
d V d t ∣ a l o n g    ( 7 ) ≤ − r W ( η ( t ) ) + M 11 r Λ + M 12 , ∀ r > r 1 ,    t > t r 1 . (17) \begin{aligned}\left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -r\mathcal{W}(\eta(t))+M_{11}r^\varLambda+M_{12},\forall r>r_1,\;t>t_{r_1}.\end{aligned}\tag{17} dtdValong(7)rW(η(t))+M11rΛ+M12,r>r1,t>tr1.(17)
其中,
M 11 = sup ⁡ t ∈ [ 0 , ∞ ) Γ ( u ( t ) ) ∑ i = 1 n sup ⁡ v ∈ { v ∈ R n + 1 : V ( v ) ≤ κ 2 ( R ) } ∥ v ∥ i θ ∥ ∂ V ( v ) ∂ v ∥ , M 12 = N 12 N sup ⁡ v ∈ { v ∈ R n + 1 : V ( v ) ≤ κ 2 ( R ) } ∣ ∂ V ( v ) ∂ v n + 1 ∣ \begin{aligned} &M_{11}=\sup_{t\in[0,\infty)}\varGamma(u(t))\sum_{i=1}^n\sup_{v\in\{v\in\mathbb{R}^{n+1}:\mathcal{V}(v)\leq\kappa_2(R)\}}\Vert v\Vert^\theta_i\left\Vert\frac{\partial \mathcal{V}(v)}{\partial v}\right\Vert,\\ &M_{12}=\frac{N_{12}}{N}\sup_{v\in\{v\in\mathbb{R}^{n+1}:\mathcal{V}(v)\leq\kappa_2(R)\}}\left\vert\frac{\partial \mathcal{V}(v)}{\partial v_{n+1}}\right\vert \end{aligned} M11=t[0,)supΓ(u(t))i=1nv{vRn+1:V(v)κ2(R)}supviθvV(v),M12=NN12v{vRn+1:V(v)κ2(R)}supvn+1V(v)
根据 V ( v ) \mathcal{V}(v) V(v)的径向无界性, { v ∈ R n + 1 : V ( v ) ≤ κ 2 ( R ) } ⊂ R n + 1 \{v\in\mathbb{R}^{n+1}:\mathcal{V}(v)\leq\kappa_2(R)\}\subset \mathbb{R}^{n+1} {vRn+1:V(v)κ2(R)}Rn+1有界,结合 ∇ V \nabla\mathcal{V} V的连续性可知 M 11 < ∞ M_{11}<\infty M11< M 12 < ∞ M_{12}<\infty M12<

对任意给定 σ > 0 \sigma>0 σ>0,由式(15)和(17)可知,若
r > r 0 ≜ max ⁡ { r 1 , ( 3 M 11 κ 3 ( σ ) ) 1 1 − Λ , ( M 12 M 11 1 Λ ) } , r>r_0\triangleq \max\left\{r_1,\left(\frac{3M_{11}}{\kappa_3(\sigma)}\right)^{\frac{1}{1-\varLambda}},\left(\frac{M_{12}}{M_{11}}^\frac{1}{\varLambda}\right)\right\}, r>r0max{r1,(κ3(σ)3M11)1Λ1,(M11M12Λ1)},
∥ η ( t ) ∥ ≥ σ \Vert\eta(t)\Vert\geq\sigma η(t)σ,则 W ( η ( t ) ) ≥ κ 3 ( σ ) W(\eta(t))\geq\kappa_3(\sigma) W(η(t))κ3(σ),此时结合式(17)有
d V d t ∣ a l o n g    ( 7 ) ≤ − r κ 3 ( σ ) + 2 M 11 r Λ ≤ − M 11 r Λ < 0 (18) \left.\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t}\right\vert_{\mathrm{along}\; (7)}\leq -r\kappa_3(\sigma)+2M_{11}r^\varLambda\leq-M_{11}r^\varLambda<0\tag{18} dtdValong(7)rκ3(σ)+2M11rΛM11rΛ<0(18)
因此,存在 t r > t r 1 t_r>t_{r_1} tr>tr1使得对任意 r > r 0 r>r_0 r>r0和所有 t > t r t>t_r t>tr ∥ η ( t ) ∥ < σ \Vert\eta(t)\Vert<\sigma η(t)<σ成立。由式(6)可得
∣ x i ( t ) − x ^ i ( t ) ∣ = ∣ η i ( t ) ∣ r n + 1 − i ≤ σ ,    i = 1 , 2 , … , n + 1. (19) \vert x_i(t)-\hat{x}_i(t)\vert=\frac{\vert\eta_i(t)\vert}{r^{n+1-i}}\leq\sigma,\;i=1,2,\ldots,n+1.\tag{19} xi(t)x^i(t)=rn+1iηi(t)σ,i=1,2,,n+1.(19)
定理1证明完毕。

和文献[1]的套路类似,这里也是反复在Lyapunov函数的导数上作文章,想方设法弄出负定项来证明收敛性,反正 r r r理论上可以任意大。这里的语言组织表面上没有利用反证法,实际上在证明 V ( η ( t ) ) \mathcal{V(\eta(t))} V(η(t))的有界性时其实还是反证法,换汤不换药。接着,文献[2]将 w w w趋于稳态值和 f f f形式作为定理1的特例进行了收敛性分析,不过证明过程没有实质区别。进一步,文献[2]利用齐次性分析了齐次ESO的收敛性,套路依旧类似。此外,文献[2]还讨论了ESO增益过高时导致的峰值现象,并建议 r r r取为时变形式,这个属于理论上的细节了,就不展开说明了,不是这里讨论套路的重点。

到目前为止,关于ESO收敛性分析套路说明完毕。总之,这里想强调的是,千万不要被表面上复杂的公式唬住,而是应认真分析公式背后的思想(就像很多控制理论方面的文章其实就是一个Lyapunov函数推来推去,不管是加了ESO也好,加了神经网络也罢,都是一路货色),明白了思想,如果不是进一步追求理论深度的话,其实是容易结合自己的研究方向弄出缓解毕业压力的新文章的,这是本文的主要观点。

参考文献

[1]Guo B Z, Zhao Z. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6): 420-430.

[2]Zhao Z L, Guo B Z. Extended state observer for uncertain lower triangular nonlinear systems[J]. Systems & Control Letters, 2015, 85: 100-108.

[3]Khalil H K. Nonlinear systems[M]. Prentice-Hall, 2001.

  • 5
    点赞
  • 3
    评论
  • 18
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值