通过MATLAB/Simulink平台设计和验证一个基于PID控制的机器人位置控制系统

目录

基于Simulink的PID控制机器人位置控制系统建模与仿真

1. 背景介绍

1.1 项目背景

1.2 系统描述

1.3 应用场景

2. 系统架构设计

2.1 系统框图

2.2 数学模型

3. Simulink仿真模型步骤

3.1 创建Simulink模型

3.2 添加模块

3.2.1 目标位置输入模块

3.2.2 PID控制器模块

3.2.3 环境模型模块

3.2.4 位置传感器模块

3.2.5 执行机构模块

3.2.6 显示模块

3.3 连接模块

3.4 设置仿真参数

3.5 运行仿真

4. PID参数调优

4.1 Ziegler-Nichols法

4.2 自动调参工具

5. 结果分析

5.1 观察位置曲线

5.2 参数调整

6. 示例代码片段

7. 结束语


基于Simulink的PID控制机器人位置控制系统建模与仿真


1. 背景介绍
1.1 项目背景

机器人位置控制是工业机器人、移动机器人和服务机器人等领域的核心问题之一。通过精确的位置控制,机器人能够实现精准的运动轨迹规划和任务执行。PID(比例-积分-微分)控制器因其结构简单、性能稳定且易于实现而被广泛应用于机器人位置控制系统中。

本项目旨在通过MATLAB/Simulink平台设计和验证一个基于PID控制的机器人位置控制系统,重点研究PID参数调优方法、系统动态响应特性以及稳态误差消除能力。

1.2 系统描述

机器人位置控制系统通常包括以下几个关键部分:

  • 目标位置设定模块:用户指定的目标位置。
  • 位置传感器模块:实时监测当前机器人的位置,并将信号反馈给控制器。
  • PID控制器模块:根据目标位置与实际位置的偏差计算控制量以调节机器人运动。
  • 执行机构模块:根据PID控制器输出调整电机转速或方向。

主要目标是实现以下功能:

  • 快速响应目标位置的变化。
  • 消除稳态误差,确保机器人位置稳定在目标值附近。
  • 抑制外界干扰对系统的影响。
1.3 应用场景
  • 工业机器人:如机械臂的位置控制,用于装配、焊接等任务。
  • 移动机器人:如AGV(自动导引车)、无人机等需要精确路径跟踪的设备。
  • 服务机器人:如家用清洁机器人、医疗辅助机器人等需要精准定位的设备。

2. 系统架构设计
2.1 系统框图

整个机器人位置控制系统可以分为以下几个模块:

  1. 目标位置输入模块:用户指定的目标位置。
  2. 位置传感器模块:模拟位置传感器采集当前机器人位置。
  3. PID控制器模块:根据目标位置与实际位置的偏差计算控制量。
  4. 执行机构模块:根据PID控制器输出调整电机转速或方向。
  5. 环境模型模块:模拟机器人运动的动力学过程。

系统框图如下所示:

 

深色版本

目标位置输入 → PID控制器 → 执行机构 → 环境模型 → 位置传感器 → 反馈回路
2.2 数学模型

假设机器人运动可以用一阶惯性环节表示: G(s)=Kτs+1G(s)=τs+1K​ 其中:

  • KK 是系统的增益。
  • ττ 是时间常数。

PID控制器的传递函数为: C(s)=Kp+Kis+KdsC(s)=Kp​+sKi​​+Kd​s 其中:

  • KpKp​ 是比例增益。
  • KiKi​ 是积分增益。
  • KdKd​ 是微分增益。

3. Simulink仿真模型步骤
3.1 创建Simulink模型
  1. 打开MATLAB并新建一个Simulink模型文件。
  2. 定义模型名称为RobotPositionControlSystem
 

matlab

深色版本

modelName = 'RobotPositionControlSystem';
new_system(modelName);
open_system(modelName);
3.2 添加模块
3.2.1 目标位置输入模块

添加一个“Step”模块作为目标位置输入。

 

matlab

深色版本

add_block('simulink/Sources/Step', [modelName '/Setpoint']);
set_param([modelName '/Setpoint'], 'StartTime', '0'); % 设置阶跃开始时间为0秒
set_param([modelName '/Setpoint'], 'FinalValue', '100'); % 设置目标位置为100单位
3.2.2 PID控制器模块

添加一个“PID Controller”模块。

 

matlab

深色版本

add_block('simulink/Continuous/PID Controller', [modelName '/PID_Controller']);
set_param([modelName '/PID_Controller'], 'P', '1'); % 初始比例增益
set_param([modelName '/PID_Controller'], 'I', '1'); % 初始积分增益
set_param([modelName '/PID_Controller'], 'D', '0'); % 初始微分增益
3.2.3 环境模型模块

添加一个“Transfer Fcn”模块来模拟机器人运动的动力学过程。

 

matlab

深色版本

add_block('simulink/Continuous/Transfer Fcn', [modelName '/Environment_Model']);
set_param([modelName '/Environment_Model'], 'Numerator', '[1]');
set_param([modelName '/Environment_Model'], 'Denominator', '[10 1]'); % 设置时间常数τ=10
3.2.4 位置传感器模块

添加一个“Gain”模块模拟位置传感器的增益。

 

matlab

深色版本

add_block('simulink/Math Operations/Gain', [modelName '/Sensor']);
set_param([modelName '/Sensor'], 'Gain', '1'); % 假设传感器增益为1
3.2.5 执行机构模块

添加一个“Saturation”模块限制电机输出范围。

 

matlab

深色版本

add_block('simulink/Discontinuities/Saturation', [modelName '/Actuator']);
set_param([modelName '/Actuator'], 'UpperLimit', '100'); % 最大电机输出为100%
set_param([modelName '/Actuator'], 'LowerLimit', '-100'); % 最小电机输出为-100%
3.2.6 显示模块

添加“Scope”模块用于显示位置曲线。

 

matlab

深色版本

add_block('simulink/Sinks/Scope', [modelName '/Position_Scope']);
3.3 连接模块

将各个模块按照系统框图连接起来。

 

matlab

深色版本

% 连接目标位置输入到PID控制器
add_line(modelName, '/Setpoint/1', '/PID_Controller/1', 'autorouting', 'on');

% 连接PID控制器到执行机构
add_line(modelName, '/PID_Controller/1', '/Actuator/1', 'autorouting', 'on');

% 连接执行机构到环境模型
add_line(modelName, '/Actuator/1', '/Environment_Model/1', 'autorouting', 'on');

% 连接环境模型到位置传感器
add_line(modelName, '/Environment_Model/1', '/Sensor/1', 'autorouting', 'on');

% 连接位置传感器到PID控制器(反馈)
add_line(modelName, '/Sensor/1', '/PID_Controller/2', 'autorouting', 'on');

% 连接环境模型到Scope
add_line(modelName, '/Environment_Model/1', '/Position_Scope/1', 'autorouting', 'on');
3.4 设置仿真参数

设置仿真时间为30秒。

 

matlab

深色版本

set_param(modelName, 'StopTime', '30'); % 设置仿真时间为30秒
save_system(modelName); % 保存模型
3.5 运行仿真

运行仿真并观察位置变化曲线。

 

matlab

深色版本

open_system(modelName); % 打开Simulink模型
sim(modelName); % 运行仿真
open_system([modelName '/Position_Scope']); % 查看位置曲线

4. PID参数调优
4.1 Ziegler-Nichols法

使用Ziegler-Nichols法进行PID参数整定:

  1. 将PID控制器设置为纯比例控制(Kp>0,Ki=0,Kd=0Kp​>0,Ki​=0,Kd​=0)。
  2. 逐步增大KpKp​,直到系统出现持续振荡,记录临界增益KuKu​和振荡周期TuTu​。
  3. 根据以下公式计算PID参数:
    • Kp=0.6KuKp​=0.6Ku​
    • Ki=2Kp/TuKi​=2Kp​/Tu​
    • Kd=KpTu/8Kd​=Kp​Tu​/8
4.2 自动调参工具

利用MATLAB的pidtune函数自动优化PID参数。

 

matlab

深色版本

% 定义系统传递函数
sys = tf(1, [10 1]);

% 使用pidtune函数优化PID参数
C = pidtune(sys, 'PID');
disp(C);

% 提取PID参数
Kp = C.Kp;
Ki = C.Ki;
Kd = C.Kd;

% 更新PID控制器参数
set_param([modelName '/PID_Controller'], 'P', num2str(Kp));
set_param([modelName '/PID_Controller'], 'I', num2str(Ki));
set_param([modelName '/PID_Controller'], 'D', num2str(Kd));

5. 结果分析
5.1 观察位置曲线

Scope窗口中查看位置随时间的变化曲线,评估以下性能指标:

  • 上升时间:位置从初始值上升到目标值90%所需的时间。
  • 超调量:位置超过目标值的最大幅度。
  • 稳态误差:位置达到稳态时与目标值的偏差。
5.2 参数调整

根据仿真结果调整PID参数,优化系统性能。例如:

  • 增大KpKp​可加快响应速度,但可能导致超调增加。
  • 增大KiKi​可消除稳态误差,但可能引起振荡。
  • 增大KdKd​可抑制超调,但可能降低系统稳定性。

6. 示例代码片段

以下是一个完整的基于Simulink的PID控制机器人位置控制系统仿真模型的搭建过程。

 

matlab

深色版本

% Step 1: Define model name and create a new system
modelName = 'RobotPositionControlSystem';
new_system(modelName);
open_system(modelName);

% Step 2: Add Setpoint Input
add_block('simulink/Sources/Step', [modelName '/Setpoint']);
set_param([modelName '/Setpoint'], 'StartTime', '0');
set_param([modelName '/Setpoint'], 'FinalValue', '100');

% Step 3: Add PID Controller
add_block('simulink/Continuous/PID Controller', [modelName '/PID_Controller']);
set_param([modelName '/PID_Controller'], 'P', '1');
set_param([modelName '/PID_Controller'], 'I', '1');
set_param([modelName '/PID_Controller'], 'D', '0');

% Step 4: Add Environment Model
add_block('simulink/Continuous/Transfer Fcn', [modelName '/Environment_Model']);
set_param([modelName '/Environment_Model'], 'Numerator', '[1]');
set_param([modelName '/Environment_Model'], 'Denominator', '[10 1]');

% Step 5: Add Sensor Gain
add_block('simulink/Math Operations/Gain', [modelName '/Sensor']);
set_param([modelName '/Sensor'], 'Gain', '1');

% Step 6: Add Actuator Saturation
add_block('simulink/Discontinuities/Saturation', [modelName '/Actuator']);
set_param([modelName '/Actuator'], 'UpperLimit', '100');
set_param([modelName '/Actuator'], 'LowerLimit', '-100');

% Step 7: Add Scope for Position Display
add_block('simulink/Sinks/Scope', [modelName '/Position_Scope']);

% Step 8: Connect Blocks
add_line(modelName, '/Setpoint/1', '/PID_Controller/1', 'autorouting', 'on');
add_line(modelName, '/PID_Controller/1', '/Actuator/1', 'autorouting', 'on');
add_line(modelName, '/Actuator/1', '/Environment_Model/1', 'autorouting', 'on');
add_line(modelName, '/Environment_Model/1', '/Sensor/1', 'autorouting', 'on');
add_line(modelName, '/Sensor/1', '/PID_Controller/2', 'autorouting', 'on');
add_line(modelName, '/Environment_Model/1', '/Position_Scope/1', 'autorouting', 'on');

% Step 9: Set Simulation Parameters
set_param(modelName, 'StopTime', '30');
save_system(modelName);

% Step 10: Run Simulation
open_system(modelName);
sim(modelName);
open_system([modelName '/Position_Scope']);

7. 结束语

通过这个项目文档,我们详细介绍了如何在Simulink中建立基于PID控制的机器人位置控制系统仿真模型,并展示了具体的建模步骤、代码实现和仿真结果分析。希望这个示例能够帮助读者更好地理解和应用PID控制技术,并为相关领域的研究和开发提供有价值的参考。如果需要进一步的优化或扩展,可以根据具体的应用需求进行相应的调整和改进。

### 使用MATLABSimulink进行机器人仿真 #### 创建模型环境 为了创建一个有效的机器人仿真环境,在MATLAB中启动Simulink之后,应当构建一个新的空白模型文件。对于特定类型的机器人如Stewart并联机器人,利用Simulink库浏览器中的组件来搭建机械结构是非常重要的[^1]。 #### 添加必要的模块 针对所要模拟的具体机器人类型,从SimulinkSimscape库中拖拽相应的物理建模元件到工作区。这些元件包括但不限于关节、连杆以及各种传感器等。对于动力学特性的研究,则需引入能够描述机器人动态行为的方程或预定义好的子系统[^2]。 #### 配置参数设置 完成基本框架建立后,细致调整各个部件之间的连接关系及其属性配置至关重要。这一步骤涉及到质量分布、摩擦系数等多个方面的影响因素设定,确保最终形成的虚拟实体尽可能贴近真实情况下的表现形式。 #### 编写自定义逻辑(如果适用) 当遇到复杂度较高的控制系统需求时,可能需要用到所谓的S函数——这是一种允许用户编写C/C++代码或者MATLAB脚本来扩展Simulink功能的方式。通过这种方式可以实现更精细的操作指令编程或是特殊算法集成。 #### 运行分析结果 一切准备就绪之后即可运行整个项目,观察输出波形图或其他可视化工具展示的数据变化趋势;必要时候还可以导出数据至外部文件以便进一步处理分析。此过程有助于验证理论假设正确否的同时也为后续优化提供了依据。 ```matlab % 示例:加载已保存的simulink模型并执行仿真 load_system('robot_model'); % 加载名为'robot_model'的模型 set_param(gcs,'SimulationCommand','start'); disp('正在运行...'); pause(5); % 假设暂停五秒等待仿真结束 close_system('robot_model',0); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值