目录
生成对抗网络(GAN, Generative Adversarial Networks)主要用于生成新数据,如图像、音频等。然而,将GAN直接应用于路径规划并不是一个典型的应用场景。通常,路径规划问题更常通过强化学习方法(如DQN、PPO等)、传统的搜索算法(如A*、RRT等)或基于图的算法来解决。
不过,如果我们从创新的角度出发,可以考虑利用GAN在某些特定方面辅助路径规划任务。例如,GAN可以用来生成环境模型或预测动态障碍物的行为模式,从而为路径规划提供更加丰富和准确的环境信息。下面,我将展示一种概念性的方法,说明如何结合Simulink与GAN进行路径规划仿真建模的示例。