智能驾驶汽车的系统开发与验证软件PreScan2022版

SimcenterPrescan2022.1版本引入了与SUMO的协同仿真,用于自动生成交通和程序化脚本创建变化场景,增强AV测试。新增行人支持的基于物理的雷达仿真,支持Linux。还提供程序化世界生成、OpenX标准兼容性、V2X自定义消息和云中大规模高保真仿真功能,用于车辆动力学和ADAS系统的验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Simcenter Prescan是基于物理学的最佳仿真平台,在桌面、集群和云端,用于智能驾驶车辆开发,于2022年三月宣布发布2022.1版本。Simcenter Prescan 2022.1引入了与SUMO的协同仿真,用于自动生成交通,并配有程序化的脚本,使用户能够快速定义具有(可控)随机性和变化的测试场景,以验证自动驾驶车辆。Simcenter基于物理的雷达(PBR)现在包括行人,支持Linux。基于物理学的Prescan激光雷达传感器模型已得到进一步改进,以帮助用户提高AV/ADAS仿真的准确性和易用性。

  • 带有智能交通的程序化世界生成

变化是开发和测试AV系统的关键。Simcenter Prescan现在配备了程序性世界生成脚本,它可以综合地生成随机变化的世界。与SUMO插件的新智能交通生成相结合,现在可以在不断变化的环境中对AV进行实际的广泛测试。

智能驾驶汽车开发的程序化世界创建

  • 支持ASAM OpenX

标准化和互操作性是必须的。协同模拟或将任何AV堆栈连接到Simcenter Prescan从未像现在这样简单,通过这个版本,可以用Simcenter Prescan创建符合要求的OpenDRIVE文件。这个版本还引入了openScenario文件的目录,以及外部控制器。这些额外的功能使Simcenter Prescan中对OpenX标准的支持达到了一个非常成熟的水平。用户能够在其虚拟验证设置中导入并使用大量的openDrive和openScenario文件。

  • 基于物理学的传感器仿真的行人支持

在这个版本中,基于物理的毫米波雷达支持行人的动画。这意味着PBR的输出将显示与这些行为者的运动有关的信息,例如微多普勒效应。另外,基于物理的毫米波雷达现在也可用于Linux系统。

基于物理学的激光雷达模拟用于自主车辆的开发和验证

基于物理学的激光雷达仿真用于自主车辆的开发和验证

Simcenter Prescan 2022.1为基于物理的激光雷达传感器带来了令人兴奋的更新。Prescan仿真由于目标的颜色变化而返回到激光雷达的能量,从而准确地仿真对感知算法性能的影响。此外,基于物理学的激光雷达的点云输出现在可以在观测器屏幕上以注释的形式进行可视化。

  • V2X插件的用户定义消息

今天可以在Prescan内定义自己的二进制消息,如ASN.1消息。V2X HiL可以通过C++或Matlab Simulink轻松连接。

  • 基于物理学的规模化仿真

在这个新版本中,点云激光雷达(基于物理的激光雷达)作为一个测试版在Azure云中得到了支持。Prescan用户现在能够使用相同的解决方案和集群/云环境,大规模地进行高保真仿真。客户还可以从更快的云端部署中受益,并在此版本中使用无监督学习对大型结果集进行分析和消化的文件指导。

在集群和云环境中基于物理学的激光雷达仿真,用于测试和验证数十亿场景中的自动驾驶车辆

  • Simcenter Prescan - Simcenter Amesim车辆动力学

Simcenter Prescan包括集成的Simcenter Amesim模型,用于高保真的车辆动力学仿真。预配置的模型包含在Prescan基本产品中,而原型模型需要额外的Simcenter Amesim运行时间许可证。原型模型提供了对A级、C级(前轮驱动)车辆、SUV(全轮驱动)和非铰接式卡车(后轮驱动)建模的选择。预配置模型使用户能够仿真ADAS和AV系统的设计和验证用例,而原型模型则通过高保真的可定制的车辆动力学仿真实现ADAS和AV案例的测试和验证。

  • 新的数据库

Simcenter Prescan有一个广泛的数据库,根据客户要求定期更新。现代IONIQ和日野蓝带客车已被添加到Simcenter Prescan车辆库中。一些新的建筑模型已被添加到城市建模中,以丰富城市建模体验。此外,基础设施对象(如水泥护栏、吸音墙、栅栏等)已被纳入,为传感器感知系统的性能和准确性测试提供了额外的变化。

  • 新的例子

EuroNCAP协议为ADAS系统的测试和验证提供了一个重要基准。Simcenter Prescan 2022.1包括具有自动报告功能的ENCAP自动紧急制动(AEB)场景套件,使我们的客户能够根据ENCAP协议场景验证其ADAS系统。这些场景可在Matlab以及Python中使用。该测试套件还包括一个旨在避免纵向碰撞的安全辅助系统的例子。

目前PreScan2022.06已经可以正常个人使用,

通过百度网盘分享的文件:2022
链接:https://pan.baidu.com/s/1RbjJJTQAdswvHI-gyOiMTQ?pwd=a5kP 
提取码:a5kP 
复制这段内容打开「百度网盘APP 即可获取」。

### Simcenter机器学习的功能及应用 #### 机器学习在Simcenter中的集成 Simcenter作为西门子Xcelerator产品组合的一部分,提供了强大的仿真和测试解决方案。该平台不仅支持传统的物理建模,还集成了先进的数据分析和机器学习算法来增强预测能力和优化设计过程[^3]。 #### 数据驱动的可靠性评估 具体而言,在功率电子领域,Simcenter POWERTESTER硬件被用于自动化零件可靠性评估流程。这涉及到使用机器学习技术分析由器件自动功率循环产生的大量数据。通过对这些数据的学习,可以更准确地估计功率模块的寿命并识别潜在的设计缺陷,进而提升产品的可靠性和耐用度。 #### 预测性维护性能优化 除了功率电子组件外,Simcenter还可以应用于其他工业场景下的资产健康管理。借助于内置的机器学习引擎,可以从历史操作记录和其他传感器输入中提取有价值的信息,帮助工程师提前发现可能发生的故障模式,并采取预防措施减少停机时间。此外,通过持续监控设备状态并理想工作条件对比,能够动态调整参数设置以达到最佳效率水平。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor # 假设df是一个包含电力模块运行数据的数据框 features = ['temperature', 'current', 'voltage'] target = 'lifetime' X_train, X_test, y_train, y_test = train_test_split(df[features], df[target]) model = RandomForestRegressor() model.fit(X_train, y_train) predictions = model.predict(X_test) ``` 此代码片段展示了一个简单的随机森林回归模型训练过程,它可以根据给定特征(温度、电流、电压)预测功率模块的预期寿命。实际应用场景可能会更加复杂,涉及更多类型的变量以及更为精细调优后的模型架构。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小明师兄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值