金融数值方法之回归计算-python实践

本文介绍了金融领域常用的回归方法,通过Python代码详细展示了如何进行单项式回归、基函数回归以及处理有噪声、未排序和多维数据的回归计算,重点探讨了np.polyfit()、np.polyval()和np.linalg.lstsq()等函数的应用。
摘要由CSDN通过智能技术生成

python的回归学习

前言

回归和插值是金融中常用的两种数学方法,本章将介绍关于回归的一些常用方法和代码。

一、回归是什么

回归是一种高效的求解函数近似值的工具,不仅对一维函数适用,同样也适用于高维函数。

最小化回归问题表达如下:
在这里插入图片描述
在回归的计算中,常用的范式为np.polyfit()、np.polyval()、np.linalg.lstsq()。

二、回归计算的具体实现

首先进行一些准备工作

import numpy as np
import matplotlib.pyplot as plt
from pylab import plt,mpl
plt.style.use('seaborn')
mpl.rcParams['font.family']='serif'
def f(x):
    return np.sin(x)+0.5*x
def create_plot(x,y,styles,labels,axlabels):
    plt.figure(figsize=(12,10))
    for i in range(len(x)):
        plt.plot(x[i],y[i],styles[i],label=labels[i])
        plt.xlabel(axlabels[0])
        plt.ylabel(axlabels[1])
    plt.legend(loc=0)
x=np.linspace(-2*np.pi,2*np.pi,50)
create_plot([x],[f(x)],['r'],['f(x)'],['x','f(x)'])

得到一个自定义的函数,如下所示:
在这里插入图片描述

1.单项式的回归

res=np.polyfit(x,f(x),deg=1,full=True)
print(res)
print('-'*108)
print(res[0])

得到参数

(array([ 4.28841952e-01, -5.29906205e-17]), array([21.03238686]), 2, array([1., 1.]), 1.1102230246251565e-14)
------------------------------------------------------------------------------------------------------------
[ 4.28841952e-01 -5.29906205e-17]

使用回归参数求值:

ry=np.polyval(res[0],x)
ry
array([-2.69449345, -2.58451412, -2.4745348 , -2.36455548, -2.25457615,
       -2.14459683, -2.0346175 , -1.92463818, -1.81465885, -1.70467953,
       -1.5947002 , -1.48472088, -1.37474156, -1.26476223, -1.15478291,
       -1.04480358, -0.93482426, -0.82484493, -0.71486561, -0.60488628,
       -0.49490696, -0.38492764, -0.27494831, -0.16496899, -0.05498966,
        0.05498966,  0.16496899,  0.27494831,  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马尔可夫宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值