python的回归学习
前言
回归和插值是金融中常用的两种数学方法,本章将介绍关于回归的一些常用方法和代码。
一、回归是什么
回归是一种高效的求解函数近似值的工具,不仅对一维函数适用,同样也适用于高维函数。
最小化回归问题表达如下:
在回归的计算中,常用的范式为np.polyfit()、np.polyval()、np.linalg.lstsq()。
二、回归计算的具体实现
首先进行一些准备工作
import numpy as np
import matplotlib.pyplot as plt
from pylab import plt,mpl
plt.style.use('seaborn')
mpl.rcParams['font.family']='serif'
def f(x):
return np.sin(x)+0.5*x
def create_plot(x,y,styles,labels,axlabels):
plt.figure(figsize=(12,10))
for i in range(len(x)):
plt.plot(x[i],y[i],styles[i],label=labels[i])
plt.xlabel(axlabels[0])
plt.ylabel(axlabels[1])
plt.legend(loc=0)
x=np.linspace(-2*np.pi,2*np.pi,50)
create_plot([x],[f(x)],['r'],['f(x)'],['x','f(x)'])
得到一个自定义的函数,如下所示:
1.单项式的回归
res=np.polyfit(x,f(x),deg=1,full=True)
print(res)
print('-'*108)
print(res[0])
得到参数
(array([ 4.28841952e-01, -5.29906205e-17]), array([21.03238686]), 2, array([1., 1.]), 1.1102230246251565e-14)
------------------------------------------------------------------------------------------------------------
[ 4.28841952e-01 -5.29906205e-17]
使用回归参数求值:
ry=np.polyval(res[0],x)
ry
array([-2.69449345, -2.58451412, -2.4745348 , -2.36455548, -2.25457615,
-2.14459683, -2.0346175 , -1.92463818, -1.81465885, -1.70467953,
-1.5947002 , -1.48472088, -1.37474156, -1.26476223, -1.15478291,
-1.04480358, -0.93482426, -0.82484493, -0.71486561, -0.60488628,
-0.49490696, -0.38492764, -0.27494831, -0.16496899, -0.05498966,
0.05498966, 0.16496899, 0.27494831,