指数成分股调整的冲击效应

A股机构化进程加速,指数+基金规模快速增长,以公募被动指数产品为例,2/3跟踪的是宽基指数,1/3是行业主题。

以中证指数公司为例,多数指数每年在6月和12月定期调整成分股,指数型基金会跟随进行被动调仓。当大量指数基金做出一致性调仓行为时,可能会对流动性欠佳的个股形成短期价格冲击。如果能提前建仓个股,在指数基金集体纳入新成分股时卖出,则有较大概率获取绝对收益。

中证指数成分调整每年发生两次,分别有三个重要的时间段。以上半年指数成分调整为例,第一个时间段为指数成分调整预测期,即每年的5月1日到5月最后一个星期五,该期间券商分析师会发布指数成分调整预测相关研报;第二个时间段为指数成分调整结果公布期;第三个时间段即为指数成分正式调整执行期。

调入宽基指数的个股未来收益

调入主题行业指数的个股未来收益

指数成分股调整冲击因子

根据追踪中证系列指数的被动指数基金规模,计算每次成分股调整时上述基金合计买入、卖出相关股票的资金规模,再结合成分股调整结果发布前20个交易日的日均成交金额,两者相除得到相应的冲击因子。具体定义如下:

冲击因子可以度量相对应被动指数型基金的买入卖出金额对个股造成的冲击影响,并以此作为选股因子,买入正面冲击大的个股和卖出负面冲击大的个股。

根据最新的指数调仓公告,采用11月29日收盘后数据计算上证50、沪深300、中证500指数新纳入个股的冲击效应:

内容概要:本文详细介绍了在COMSOL中使用不同参数估计方法(如最小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了最小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函数的定义、参数设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度数据,并将其与实验值进行比较,以评估各方法的准确性。最后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参数估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的数值模拟;② 对比不同参数估计方法的性能,选择最适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验数据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部最优、参数相关性和数据预处理等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马尔可夫宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值