期权Delta对冲之Zakamouline双渐近方法

期权对冲一般采用间隔对冲,时事对冲成本过高,实际市场中较难实现。基于效用最大化的方法Hodges-Neuberger范式从理论上解决了对问题,但在实践中难以实施,于是有了Whalley-Wilmott渐近方法和Zakamouline双渐近方法。

一个简单的对冲策略就是在固定的时间间隔进行对冲。在每个时段的末尾,执行交易以保证标的资产组合的总delta值为0(由于受到交易单位为离散值的限制,delta值尽可能接近于0)。这个办法实施起来比较简单,而且易于理解,但是在选择对冲的时间间隔时显得有些随意。很显然,提高对冲频率可以降低风险,但反之,降低对冲频率可以降低成本。JohnC.Hull的书中“Delta对冲的动态过程”的例子就是这种方法。

BSM期权定价模型假设一个完全资本市场,在该市场内可以通过构建无风险资产和权益的策略组合来复制收益。由于在完全资本市场中没有套利空间存在,所以期权价格等于构建策略的成本。然而现实的市场环境中存在交易成本,无套利空间的假设前提也就不复存在。根据市场行情不断构建策略的过程中势必会产生交易成本,有很多经济学家提出过一系列的方法来权衡期权定价和对冲成本。

这其中最著名的方法莫过于基于效用理论的期权对冲方法(HodgesandNeuberger,1989)。效用理论能够有效地权衡风险和对冲成本,不过该方法由于不具备解析解而没有得到大范围的应用。该方法的数值解法较为繁琐,若运用到实际交易过程中需要较长时间的运算。基于效用理论,最优对冲策略为:当对冲比率落在“非交易区间”时不做操作;一旦对冲比率超出“非交易区间”时,立即对冲至区间的最近边界处。在交易世界,一个比较常用的方法就是建立所谓的“对冲带”:在对冲点上下一定范围设定对冲上限和对冲下限,一旦当策略组合的delta超出这一范围,马上重新对冲至对冲点。

Whalley和Wilmott在1997年首次引入了模型渐进解的计算方法。他们假设在交易成本相对于BSM公式中期权价格很小,且对冲风险容忍度也很小的情况下,通过对最优化系统的渐进分析,得到一个较为可行的对冲算法。Whalley和Wilmott的渐进算法满足如下公式:

基于上述讨论,Zakamouline在2006提出了基于效用理论的对冲双渐进解。经过其研究分析,该方法相较于Whalley和Wilmott及其他方法,表现更优。Zakamouline构造的delta对冲带具有如下形式:

使用python进行建模:

from delta_hedge.BS_Model import BS_Model

if __name__=='__main__':
    #参数 
    K = 100
    sigma =0.25
    T = 0.5
    S=np.arange(40,180,5)
    r=0.05
    trade_cost_lambda=0.01
    risk_lambda=0.25

    model_gamma=BS_Model(S,K,T,r,sigma,'call').calc_gamma()
                re_sigma=Zakamouline(0.01,model_gamma,S,r,T,sigma,trade_cost_lambda,risk_lambda).get_modified_sigma()
    re_model_delta=BS_Model(S,K,T,r,re_sigma,'call').calc_delta()
    model_delta=BS_Model(S,K,T,r,sigma,'call').calc_delta()

变分模态分(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分(EMD)类似,但VMD通过变分优化框架显著提升了分的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分为独立模态,并理每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马尔可夫宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值