LR逻辑斯蒂回归(对数几率回归)

本文详细介绍了逻辑斯蒂回归(LR)模型,从模型引入、对数几率函数及其数学性质,到损失函数的选择和优化算法。LR模型通过线性模型结合Sigmoid函数对分类可能性建模,能进行概率预测且损失函数是凸函数,适合使用梯度下降法优化。
摘要由CSDN通过智能技术生成

从LR模型的三要素出发。

模型

模型引入

       如果在线性模型 ( z = θ T x z = \theta^T x z=θTx) 的基础上做分类,比如二分类任务,即 y ∈ { 0 , 1 } y\in \{0,1\} y{ 0,1}.最直观的,可以将线性模型的输出值再套上一个函数 y = g ( z ) y = g(z) y=g(z),最简单的就是“单位阶跃函数”.
y = { 0 z < 0 0.5 z = 0 1 z > 0 y= \begin {cases} 0 & z<0 \\ 0.5 & z=0 \\ 1 & z>0 \end{cases} y=00.51z<0z=0z>0
       预测值z大于0 的判定为类别0,小于 0 的判定为类别1,预测值为临界值可以任意判定。
       但是,这样的分段函数数学性质不太好,(形状如下图红线部分所示)它既不连续也不可微。我们知道,通常在做优化任务时,目标函数最好是连续可微的。

       这里就用到了对数几率函数 (形状如图中黑色曲线所示):
在这里插入图片描述

对数几率函数(模型)
  • 函数公式: y = 1 1 + e − z y= \frac{1}{1+e^{-z}} y=1+ez1
  • 几率(ods): y 1 − y = e z \frac{y}{1-y}=e^z 1yy=ez
  • 对数几率: l n y 1 − y = z ln\frac{y}{1-y}=z ln1yy=z
  • 对数几率函数是一种“Sigmoid”函数。
  • Sigmoid 函数表示形式S形的函数(形状如上图中黑色曲线所示)。

       将 z = θ T x z=\theta^Tx z=θTx带入对数几率函数,得到:
y = 1 1 + e − θ T x (1) y=\frac{1}{1+e^{-\theta^Tx}}\tag{1} y=1+e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值