《GANs实战》学习笔记(一)第一章 GAN简介

 

GAN(生成对抗网络)有一本实战书出版了,了解下?

这个标题的文章中有对本书的非常专业的概括,我也是因为读了它的导读购买阅读并整理这个子分类专栏。

GAN(生成对抗网络)出版了一本实战书,了解下?

本书电子版

目录:

1、第一章 GAN简介

2、第二章 自编码器生成模型入门

3、第三章 你的第一个GAN模型:生成手写数字

4、第四章 深度卷积生成对抗网络(DCGAN)

5、第五章 训练与普遍挑战:为成功而GAN

6、第六章 渐进式增长生成对抗网络(PGGAN)

7、第七章 半监督生成对抗网络(SGAN)

8、第八章 条件生成对抗网络(CGAN)

9、第九章 循环一致性生成对抗网络(CycleGAN)

10、第十章 对抗样本

11、第十一章 GAN的实际应用

12、第十二章 展望未来

 

 

自我批评的机器学习系统。

自动学习的表达 和 机器学习的反馈循环。

数据非常昂贵,计算却越来越便宜。

GAN的数据合成能力远远优于其他技术。


第一章 GAN简介

图灵测试:一个不知情“观察者”与两个“对应者”交谈:一个是人类、一个是计算机。如果观察者不能分辨出机器和人。则机器是智能的。

计算机超过人的领域:人脸识别、围棋。

机器学习算法非常擅长  识别已有数据中的模式,洞察能力。

1、什么是GAN

GAN是一类由两个同时训练的模型组成的机器学习技术:一个是生成器,训练其生成伪数据;另一个是鉴别器,训练其从真实数据中识别伪数据。

  • 生成(generative)一词预示着模型的总目标——生成新数据。GAN通过学习生成的数据取决于所选择的训练集,例如,如果我们想用GAN合成一幅看起来像达•芬奇作品的画作,就得用达•芬奇的作品作为训练集。

  • 对抗(adversarial)一词则是指构成GAN框架的两个动态博弈竞争的模型生成器和鉴别器

    • 以假乱真:生成器的目标是生成与训练集中的真实数据无法区分的伪数据——在刚才的示例中,这就意味着能够创作出和达•芬奇画作一样的绘画作品。

    • 鉴别真假:鉴别器的目标是能辨别出哪些是来自训练集的真实数据,哪些是来自生成器的伪数据。也就是说,鉴别器充当着艺术品鉴定专家的角色,评估被认为是达•芬奇画作的作品的真实性。

    • 这两个网络不断地“斗智斗勇”,试图互相欺骗:生成器生成的伪数据越逼真,鉴别器辨别真伪的能力就要越强。

  • 网络(network)一词表示最常用于生成器和鉴别器的一类机器学习模型:神经网络。依据GAN实现的复杂程度,这些网络包括从最简单的前馈神经网络(第3章)到卷积神经网络(第4章)以及更为复杂的变体(如第9章的U-Net)。

2、GAN是如何工作的

支撑GAN的数学理论是较为复杂的(我们将在后面几章中集中探讨,特别是第3章和第5章),幸运的是,我们有许多现实世界的示例可以做类比,这样能使GAN更容易理解。前面我们讨论了一个艺术品伪造者(生成器)试图愚弄艺术品鉴定专家(鉴别器)的示例。伪造者制作的假画越逼真,鉴定专家就必须具有越强的辨别真伪的能力。反过来也是成立的:鉴定专家越善于判断某幅画是否是真的,伪造者就越要改进造假技术,以免被当场识破。

还有一个比喻经常用来形容GAN(Ian Goodfellow经常喜欢用的示例),假币制造者(生成器)和试图逮捕他的侦探(鉴别器)——假钞看起来越真实,就需要越好的侦探才能辨别出它们,反之亦然。

用更专业的术语来说,生成器的目标是生成能最大程度有效捕捉训练集特征的样本,以至于生成出的样本与训练数据别无二致。生成器可以看作一个反向的对象识别模型——对象识别算法学习图像中的模式,以期能够识别图像的内容。生成器不是去识别这些模式,而是要学会从头开始学习创建它们,实际上,生成器的输入通常不过是一个随机数向量。

生成器通过从鉴别器的分类结果中接收反馈来不断学习。

鉴别器的目标是判断一个特定的样本是真的(来自训练集)还是假的(由生成器生成)。

因此,每当鉴别器“上当受骗”将假的图像错判为真实图像时,生成器就会知道自己做得很好;相反,每当鉴别器正确地将生成器生成的假图像辨别出来时,生成器就会收到需要继续改进的反馈。

鉴别器也会不断地改善,像其他分类器一样,它会从预测标签与真实标签(真或假)之间的偏差中学习。所以随着生成器能更好地生成更逼真的数据,鉴别器也能更好地辨别真假数据,两个网络都在同时不断地改进着。

3、GAN实战

两个GAN子网及其输入、输出和交互
两个GAN子网及其输入、输出和交互

(1)训练数据集——包含真实的数据集,是我们希望生成器能以近乎完美的质量去学习模仿的数据集。在手写数字的图像组成示例中,该数据集用作鉴别器网络的输入(x)。

(2)随机噪声向量——生成器网络的初始输入(z)。此输入是一个由随机数组成的向量,生成器将其用作合成伪样本的起点。

(3)生成器网络——生成器接收随机数向量(z)作为输入并输出伪样本x^{*})。它的目标是生成和训练数据集中的真实样本别无二致的伪样本

(4)鉴别器网络——鉴别器接收来自训练集的真实样本(x)或生成器生成的伪样本(x^{*})作为输入。对每个样本,鉴别器会进行判定并输出其为真实的概率。

(5)迭代训练/调优——对于每个鉴别器的预测,我们会衡量它效果有多好(阈值)——就像对常规的分类器一样——并用结果反向传播去迭代优化鉴别器网络和生成器网络。

  • 更新鉴别器的权重和偏置,以最大化其分类的精确度(最大化正确预测的概率:x为真的概率,x^{*}为假的概率)。

  • 更新生成器的权重和偏置,以最大化鉴别器将x^{*}误判为真的概率。

GAN原理图
GAN网络原理图

其实我觉得上面这张图表现的也很准确。

3.1 GAN的训练

GAN训练算法,对于每次训练迭代,执行如下操作。

(1)训练鉴别器。

  • a.从训练集中随机抽取真实样本x。

  • b.获取一个新的随机噪声向量z,用生成器网络合成(生成)一个伪样本x^{*}

  • c.用鉴别器网络对x和x^{*}进行分类预测

  • d.计算分类预测误差反向传播总误差以更新鉴别器的可训练参数,寻求最小化分类误差

(2)训练生成器。

  • a.获取一个新的随机噪声向量z,用生成器网络合成一个伪样本x^{*}

 

  • b.用鉴别器网络对x^{*}进行分类

  • c.计算分类预测误差反向传播以更新生成器的可训练参数,寻求最大化鉴别器误差

3.2 达到平衡

在GAN结构中,鉴别器网络和生成器网络有两个互为竞争对手的目标一个网络越好,另一个就越差。如何决定何时停止进程呢?

博弈论中:零和博弈:即一方的收益等于另一方的损失。

当一方提高一定程度时,另一方会恶化同样的程度。

零和博弈都有一个纳什均衡点:任何一方无论怎么努力都不能改善他们的处境或者结果。

当满足以下条件时,GAN达到纳什均衡

(1)生成器生成的伪样本与训练集中的真实数据别无二致。造假造到极致:成真了。

(2)鉴别器所能做的只是随机猜测一个特定的样本是真的还是假的(也就是说,猜测一个示例为真的概率是50%)。

造假造到极致:跟真的一样。都能复制了,肯定无法区分出来。所有可以鉴别的地方都一样了。

比如说印美钞,印制美钞的纸张一样的,油彩一样的,工艺一样的,不一样的地方在于一个官方发行,一个非官方发行。拿到市面上,根本无法区分。

此时生成器就是我们最需要的。

对鉴别器来说,只能蒙了,一半一半了。因为对他来说,需要鉴别的地方都鉴定过了。别的要求无法提供。

当达到纳什均衡时,GAN就被认为是收敛的。

这是一个棘手的问题,在实践中,由于在非凸博弈中实现收敛所涉及的巨大复杂性,几乎不可能达到GAN的纳什均衡。GAN的收敛仍是GAN研究中最重要的的开放性问题之一。

测试一个集合是不是凸的,只要任意取集合中的俩个点并连线,如果说连线段完全被包含在此集合中,那么这个集合就是凸集,

4、为什么要学习GAN

(1)最值得关注:GAN可以创作超现实主义意象的能力。以下人脸都是用渐进式增长生成对抗网络生成的。

渐进式增长生成对抗网络生成

 

(2)另一个瞩目的成就:GAN可以实现图像到图像的转换(image-to-image translation)。

风格迁移

GAN可以将图像从一种风格转换为另一种风格。可以把马的图像转换为斑马的图像,把一张照片变成莫奈的画作。通过GAN的变体:循环一致性生成对抗网络(CycleGAN):无监督,无标签。

(3)亚马逊尝试利用GAN提供时尚建议。医学研究中,GAN通过合成样本增强数据集,以提高诊断准确率。

(4)GAN被视为实现“通用人工智能”的重要基石。

它是一种能够匹敌人类认知能力的人工系统,能够获取几乎任何领域的专业知识——从走路所需的运动技能语言表达技能,甚至于写诗所需的创作技能

(5)GAN可能被用来制造和传播易使人轻信的错误信息。

“除掉”一种技术是不可能的。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值