1.NLP
attention
https://zhuanlan.zhihu.com/p/47063917
self-attention
https://zhuanlan.zhihu.com/p/47282410
Self Attention与传统的Attention机制非常的不同:传统的Attention是基于source端和target端的隐变量(hidden state)计算Attention的,得到的结果是源端的每个词与目标端每个词之间的依赖关系。但Self Attention不同,它分别在source端和target端进行,仅与source input或者target input自身相关的Self Attention,捕捉source端或target端自身的词与词之间的依赖关系;然后再把source端的得到的self Attention加入到target端得到的Attention中,捕捉source端和target端词与词之间的依赖关系。因此,self Attention Attention比传统的Attention mechanism效果要好,主要原因之一是,传统的Attention机制忽略了源端或目标端句子中词与词之间的依赖关系,相对比,self Attention可以不仅可以得到源端与目标端词与词之间的依赖关系,同时还可以有效获取源端或目标端自身词与词之间的依赖关系。
引自:https://zhuanlan.zhihu.com/p/79115586
2.CV
直接卷积生成score map 再乘上去。如PCB_RPP
精品文章
https://www.zhihu.com/question/68482809
https://www.zhihu.com/question/68482809/answer/264070398
https://cloud.tencent.com/developer/article/1505040
https://blog.csdn.net/yideqianfenzhiyi/article/details/79422857