Depthwise Separable convlution | 举例详细解释

例如:上一层的输出为100x100x128,经过具有256个输出的5x5卷积层之后(stride=1,pad=2),输出数据为100x100x256。其中,卷积层的参数为128x5x5x256。假如上一层输出先经过具有32个输出的1x1卷积层,再经过具有256个输出的5x5卷积层,那么最终的输出数据仍为为100x100x256,但卷积参数量已经减少为128x1x1x32 + 32x5x5x256,大约减少了4倍。

 

一 基本理解

先上一张图

这里写图片描述

      下图就是depthwise separable convolution的示意图,其实就是将传统的卷积操作分成两步,假设原来是3*3的卷积,那么depthwise separable convolution就是先用M个3*3卷积核一对一卷积输入的M个feature map,不求和,生成M个结果;然后用N个1*1的卷积核正常卷积前面生成的M个结果,求和,最后生成N个结果。因此文章中将depthwise separable convolution分成两步,一步叫depthwise convolution,就是下图的(b),另一步是pointwise convolution,就是下图的(c)。

这里写图片描述

     

         假设,输入的feature map大小为DF * DF,维度为M,滤波器的大小为DK * DK,维度为N,并且假设padding为1,stride为1。则,

原始的卷积操作,需要进行的矩阵运算次数为DK · DK · M · N · DF · DF,卷积核参数为DK · DK · N · M

depthwise separable convolutions需要进行的矩阵运算次数为DK · DK ·M · DF · DF + M · N · DF · DF,卷积核参数为DK · DK · M+N · M

由于卷积的过程,主要是一个spatial dimensions减少,channel dimension增加的过程,即N>M,所以,DK · DK · N · M> DK · DK · M+N · M。

二、举例

       直观上来看,这种分解在效果上确实是等价的。比如,把上图的代号化为实际的数字,输入图片维度是11 × 11 × 3,标准卷积为3 × 3 × 3 ×16(假设stride为2,padding为1),那么可以得到输出为6 × 6 × 16的输出结果。现在输入图片不变,先通过一个维度是3 × 3 × 1 × 3的深度卷积(输入是3通道,这里有3个卷积核,对应着进行计算,理解成for循环),得到6 × 6 × 3的中间输出,然后再通过一个维度是1 × 1 × 3 ×16的1 ×1卷积,同样得到输出为6 × 6 × 16。以上解析还可以借助一幅经典的GIF图来理解,先放这里了。此处的矩阵运算计算量是原来:11x11x3x3x3x16 =522272 ; 现在是11x11x3x3x3+11x11x3x16 = 9075.我自己理解现在是11x11x3x3x3+6x6x3x16 = 5995,因为中间输出的尺寸是6x6.

è¿éåå¾çæè¿°

 

参考:

CNN网络优化学习总结——从MobileNet到ShuffleNet

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 深度可分离卷积(Depthwise Separable Convolution)是一种卷积方式,它将卷积操作分为两步来进行:深度卷积和点卷积。其中,深度卷积对于每个输入通道分别做卷积,而点卷积则将各个输入通道的卷积结果按照权值线性组合。这样可以减少参数量,加速计算,并且能够在保持精度的前提下压缩模型。 ### 回答2: Depthwise separable convolution(深度可分离卷积)是一种轻量级的卷积操作,它可以有效降低模型的参数量和计算量,从而实现更加高效的模型训练和推理。 相比于传统的卷积操作,depthwise separable convolution 由两个步骤构成:depthwise convolution(深度卷积)和pointwise convolution(逐点卷积)。具体来说,先对输入的每个通道单独进行卷积操作(即深度卷积),然后再通过逐点卷积来将各个通道的特征进行整合,最终得到输出结果。 对于一个用于目标识别的卷积网络来说,depthwise separable convolution 的主要优势在于它能够显著减少网络中的参数量和计算量。由于在进行深度卷积时,每个通道都是单独进行处理,所以会大幅降低计算量和计算时间。而逐点卷积则可以有效压缩卷积层的通道数,从而降低参数量和内存占用。 举个例子,假设对于一个输入大小为H×W×C的图像,原本需要使用大小为K×K×C×S的卷积核来进行卷积操作,其中S表示输出通道数目。那么使用 depthwise separable convolution 进行操作时,先使用大小为K×K×C的卷积核进行深度卷积(相当于使用了C个大小为K×K的卷积核),然后通过大小为1×1×CS的卷积核进行逐点卷积。这样,在输出相同结果的情况下,参数量和计算量就能大幅降低,从而加速模型的训练和推理。 总之,depthwise separable convolution 是一种轻量级的卷积操作,可以有效压缩模型的参数量和计算量,提高模型的计算效率。在目标识别等领域,可以作为一种强大的工具,用于设计更加高效的卷积神经网络。 ### 回答3: Depthwise separable convolution(深度可分离卷积)是一种卷积神经网络(CNN)中用于减少网络参数个数和计算量的结构。它是由谷歌的研究者提出的一种卷积结构,并在MobileNet中得到广泛应用。 普通的卷积神经网络是由卷积层、池化层和全连接层组成。其中,卷积层是网络中最消耗时间和空间的部分,需要大量的计算资源。深度可分离卷积是一种卷积结构,通过分离卷积的过程,将卷积操作分为两个部分:深度卷积和逐点卷积。 首先,深度卷积只在每个输入通道上进行卷积操作,而不是在所有输入通道上同时进行。这样可以减少卷积核的数量。其次,逐点卷积使用1x1的卷积核,对每个通道分别进行卷积操作。这可以将通道之间的相互影响降到最低。 因为这种分离,深度可分离卷积可以明显降低计算量和模型参数,能够在保证模型精度的情况下,让模型具有更小的体积和更高的运行速度。相比于普通的卷积神经网络,深度可分离卷积具有更好的效率和性能。 深度可分离卷积的应用可以广泛用于移动端设备、无线网络等资源有限的环境中。它在现代机器学习使用中得到了广泛的应用,包括在计算机视觉领域(如图像识别、物体检测)和语音处理领域(如语音识别)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值