基于长短时记忆网络的人体姿态检测方法

文章提出了一种基于LSTM的人体姿态检测方法,利用智能手机中的传感器收集时序数据,创建了包含多种行为姿态的数据集。实验结果显示,与浅层学习、全连接神经网络和卷积神经网络相比,LSTM在姿态检测的准确性上提高了4.49个百分点,证明了其在处理时间序列数据和姿态检测中的优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要: 针对在循环神经网络(RNN)网络结构下较为遥远的历史信号无法传递至当前时刻的问题,长短时记忆(LSTM)网络作为RNN的一种变体被提出,在继承RNN对时间序列优秀的记忆能力的前提下,LSTM克服了这种时间序列的长期依赖问题,并在自然语言处理与语音识别领域有较好的表现。对于人体行为动作中也存在作为时间序列的长期依赖问题与使用传统滑窗算法采集数据时造成的无法实时检测的问题,将LSTM扩展应用到人体姿态检测,提出了基于LSTM的人体姿态检测方法。通过目前智能手机中一般都带有的加速度传感器、陀螺仪、气压计和方向传感器实时采集的时序数据,制作了包含3336条带有人工标注数据的人体姿态数据集,对行走、奔跑、上楼梯、下楼梯和平静五种日常持续性行为姿态与跌倒、起立、坐下和跳跃这四个突发行为姿态进行预测分类。对比LSTM网络与该研究领域内常用的浅层学习算法、深度学习全连接神经网络与卷积神经网络,实验结果表明,所提方法使用端对端的深度学习的方法相比基于所制作数据集的人体姿态检测算法模型的正确率提高了4.49个百分点,验证了该网络结构的泛化能力且更适合姿态检测。

关键词: 长短时记忆网络, 人体姿态, 多传感器, 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xifenglie123321

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值