python基于opencv的车道线检测左右转弯原理详解

该项目的目标/步骤如下:

  • 给定一组棋盘图像计算相机校准矩阵和畸变系数。
  • 对原始图像应用失真校正。
  • 使用颜色变换、渐变等来创建阈值二值图像。
  • 应用透视变换来校正二进制图像(“鸟瞰图”)。
  • 检测车道像素并拟合以找到车道边界。
  • 确认检测到的线与现实和之前的线一致,即它们具有相似的曲率,水平距离在3.7m左右等。
  • 确定车道的曲率和车辆相对于中心的位置。
  • 将检测到的车道边界变形回原始图像。
  • 输出车道边界的视觉显示以及车道曲率和车辆位置的数值估计。

校准图像的过程使用棋盘图案并从对象点的定义开始(现实世界中奶酪图案上的已知点以 xyz 坐标给出,其中 z=0 因为图案位于平面上)和图像点(在图像上找到的点,使用函数:cv2.findChessboardCorners)。对于文件夹“/camera_cal”中的每个图像,这些点存储在 numpy 数组中。通过匹配图像和目标点(使用函数 cv2.calibrateCamera),我们可以获得相机矩阵和畸变参数,这将允许我们使用“cv2.undistort”函数对图像进行去畸变。然后将这些参数保存在 pickle 文件中以备将来使用。

 图。1。扭曲的棋盘图案

 图 2。未扭曲的棋盘图案

管道

在这里,我总结了我的车道数据操作管道。

1.畸变校正

应用相机不失真(功能不失真(img,mtx,dist,None,mtx)),我们可以从失真图像(img):到未 

 失真图像:  通过使用相机矩阵(mtx)和失真系数(dis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xifenglie123321

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值