理解MAML:Model-Agnostic Meta-Learning for Fast Adaption of Deep Networks

MAML(Model-Agnostic Meta-Learning)是一种用于深度网络快速适应的元学习方法,旨在解决有限样本(few-shot)学习问题。通过在每个任务上进行训练和验证,MAML优化网络在少量样本上的拟合能力。在训练过程中,它以任务为单位,使用支持集进行训练并用查询集验证。测试时,利用新的支持集微调网络,然后用查询集评估性能。
摘要由CSDN通过智能技术生成

论文:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (arXiv:1703.03400v3 [cs.LG] 18 Jul 2017)


MAML解决的就是few-shot learning的问题。few-shot就是在有限的样本上训练后进行测试,那么问题转化为,用有限的样本进行训练使网络快速适应拟合当前的类别,然后进行测试。

那么网络的目标就是:在有限的样本上进行快速拟合。训练网络的目的就是在有限的样本上快速拟合的能力。

由此MAML将每个快速拟合作为目标,所以以task为单位: 每个Task中包含有训练/微调样本(support)和验证/测试样本(query)。训练、测试时都是以task为样本单位输入的。

task就包含了有限样本的快速拟合过程(support,在网络中属于训练微调步骤),然后测试(query)过程。

【注】为了区分训练和测试时的样本类别名称: 

  • 训练步骤:support表示为训练集,query表示为验证集;
  • 测试步骤:support表示为微调集,query表示为测试集。

【训练】:

1. 随机的初始化网络参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值