显著性检测算法综述

本文回顾了显著性检测的研究进展,从早期的计算模型到将显著性检测视为二元分割问题,再到基于深度学习的方法。深度学习的引入,特别是CNN的应用,如SuperCNN和深度监督网络,使得显著性检测的性能大幅提升,成为了当前领域的主流方向。
摘要由CSDN通过智能技术生成

最近又对显著性检测的发展现状做了一些梳理,特整理于此。

参考了这篇文献:Borji A, Cheng M M, Jiang H, et al. Salient Object Detection: A Survey[J]. Eprint Arxiv, 2014, 16(7):3118.

    人类的视觉神经系统可以在复杂的场景中快速发现感兴趣的目标,这种具有选择的视觉能力称为视觉注意机制。计算机视觉研究的目的在于模拟人的视觉神经系统,使得计算机同样具有智能的视觉注意、理解能力。显著性检测是目前计算机领域的一个热点研究方向,其主要工作是通过建立一种视觉注意模型来模拟人类视觉系统。 

研究现状:

第一阶段:建立计算模型进行显著性检测。

        1998年,Itti等人提出了经典的显著性检测模型Itti模型[1],产生了跨认知心理学,神经科学和计算机视觉等多个学科的第一波浪潮。该模型的提出主要是受到灵长类动物早期视觉系统的神经结构和行为所启发而产生了视觉注意系统。其主要思想是对输入图像首先进行多个特征通道和多尺度分解,再进行滤波得到特征图,再对特征图融合得到最终显著图。

       2007年,Hou X等人提出SR方法[2]&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值