最近又对显著性检测的发展现状做了一些梳理,特整理于此。
参考了这篇文献:Borji A, Cheng M M, Jiang H, et al. Salient Object Detection: A Survey[J]. Eprint Arxiv, 2014, 16(7):3118.
人类的视觉神经系统可以在复杂的场景中快速发现感兴趣的目标,这种具有选择的视觉能力称为视觉注意机制。计算机视觉研究的目的在于模拟人的视觉神经系统,使得计算机同样具有智能的视觉注意、理解能力。显著性检测是目前计算机领域的一个热点研究方向,其主要工作是通过建立一种视觉注意模型来模拟人类视觉系统。
研究现状:
第一阶段:建立计算模型进行显著性检测。
1998年,Itti等人提出了经典的显著性检测模型Itti模型[1],产生了跨认知心理学,神经科学和计算机视觉等多个学科的第一波浪潮。该模型的提出主要是受到灵长类动物早期视觉系统的神经结构和行为所启发而产生了视觉注意系统。其主要思想是对输入图像首先进行多个特征通道和多尺度分解,再进行滤波得到特征图,再对特征图融合得到最终显著图。
2007年,Hou X等人提出SR方法[2]&#