Ubuntu安装OpenCV

版权声明:本文为博主原创文章,未经博主允许不得转载。 博客主页:http://blog.csdn.net/xs1102 https://blog.csdn.net/xs1102/article/details/74729416

在ubuntu下安装opencv_2.4.13。目前最新的版本是3。但2.4算是稳定版本了。

系统环境:ubuntu16.04.2_amd32

时间:2017.7.7

博客主页:http://blog.csdn.net/xs1102

文章地址:http://blog.csdn.net/xs1102/article/details/74729416

1、下载源代码

先从官网下载源代码:http://opencv.org/releases.html,如果以后网址改变,请自行搜索。将源代码解压到主目录下,压缩包内自带一级文件夹,不用担心文件散落一地。

2、安装依赖项

 

apt-get install build-essential libgtk2.0-dev libvtk5-dev libjpeg-dev libtiff4-dev libjasper-dev libopenexr-dev libtbb-dev

 

以上是基本的依赖项,基本可以保证编译不出错。其他依赖库可以安装,来增强opencv的功能。不安装则不编译相关模块。

3、编译安装

建立build目录,在build目录中配置项目。默认安装到/usr/local目录下。

 

cmake

 

或者

 

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D WITH_V4L=ON -D WITH_QT=ON -D WITH_OPENGL=ON .

 

可以使用4个线程编译,请根据自己的情况选择,i5启用4个线程,就基本做不了其他事了。默认-j1

 

make -j4

 

安装

 

make install

 

安装完成。

==========================================================================

2018.04.11更新:

如果需要一并安装扩展模块,可以下载对应版本的opencv-contrib,然后在cmake中设置“OPENCV_EXTRA_MODUALS_PATH”其参数值为opencv_contrib源码包中的modules目录。

opencv_contrib下载地址:https://github.com/opencv/opencv_contrib/releases

 

==========================================================================

2018.07.02更新:

修正以前的笔误,扩展模块参数名为OPENCV_EXTRA_MODULES_PATH,拼写错误

 

==========================================================================

2018.10.06更新:

若编译DEBUG版本的opencv:

需要将CMAKE_BUILD_TYPE改为DEBUG,并且将WITH_TBB改为BUILD_TBB,因为下载的TBB库时release的,opencv会报错的。若有其他找不到debug版本库的错误,也将其选项做类似修改。

若编译时出现

/usr/bin/ld: /usr/local/lib/libgflags.a(gflags.cc.o): relocation R_X86_64_32 against `__pthread_key_create@@GLIBC_2.2.5' can not be used when making a shared object; recompile with -fPIC
/usr/local/lib/libgflags.a: error adding symbols: Bad value

这是gflags库的问题,重新编译gflags的动态库和静态库。以下是编译命令。注意:这是编译gflags的命令!

mkdir build && cd build
cmake -DBUILD_SHARED_LIBS=ON -DBUILD_STATIC_LIBS=ON ..
make && make install

若glog也有类似问题,灵活变通一下。

==========================================================================

2019.05.23更新:

若使用CUDA加速,在cmake命令的参数中添加以下几个参数

 -D WITH_CUDA=ON -D WITH_CUBLAS=ON -D CUDA_FAST_MATH=ON 

,之后编译完成就可以使用GpuMat等功能,享受显卡带来的加速。

展开阅读全文

没有更多推荐了,返回首页