线性回归

1. 假设函数

h(x)=i=0nθixi=θTx

其中, θ 为权重, x 为样本,xi为特征, x0=1


2. 最小二乘损失函数

J(θ)=12i=1m(hθ(x(i))y(i))2

目标:寻找 θ ,使理论值 hθ(x(i)) 接近于观测值 y


3. 求解
将损失函数改写成矩阵形式:

J(θ)=12(Xθy⃗ )T(Xθy⃗ )

当导数为0时,取到极小值:

θJ(θ)   =θ12(Xθy⃗ )T(Xθy⃗ )=12θ(θTXTXθθTXy⃗ y⃗ TXθ+y⃗ Ty⃗ )=12(XTXθ+XTXθ2XTy⃗ )=XTXθXTy⃗ 

θJ(θ)=0 ,可得: θ=(XTX)1XTy⃗ 

  • X 为非奇异矩阵时:θ=X1y⃗ 
  • X 为奇异矩阵或长方阵时:θ=X+y⃗ 

4.极大似然估计解释为什么选择最小二乘

y(i)=θTx(i)+ε(i)

其中, y(i) 为观测值, h(x)=θTx(i) 为理论值, ε(i) 为预测误差。

ε(i)N(0,σ2) ,即:

p(ε(i))=12πσexp((ε(i))22σ2)

y(i)N(θTx(i),σ2) ,即:

p(y(i)|x(i);θ)=12πσexp(y(i)θTx(i))22σ2

p(y(i)|x(i);θ) 表示给定 x(i) θ 后, y(i) 的分布。

极大似然估计

L(θ) =i=1mp(y(i)|x(i);θ)=i=1m12πσexp(y(i)θTx(i))22σ2

maxL(θ) 等价于 maxlogL(θ)

l(θ)   =logL(θ)=logi=1m12πσexp((y(i)θTx(i))22σ2)=i=1mlog12πσexp((y(i)θTx(i))22σ2)=mlog12πσ1σ2(12i=1m(y(i)θTx(i))2)

maxl(θ) 等价于:

min12i=1m(y(i)θTx(i))2

即最小二乘损失函数。


5. 正则化

J(θ)=12mi=1m(hθ(x(i))y(i))2+λj=1nθ2j

注意: θ0 为偏置,不加正则。

梯度下降
j=0 时,即偏置:

θ0:=θ0α1mi=1m(hθ(x(i))y(i))x(i)0

j>0 时,即权重:

θj:=θj(1αλm)α1mi=1m(hθ(x(i))y(i))x(i)j

其中, αλm 略小于1,每次更新后会削减权重。


6. 扩展
- Ridge 回归=线性回归+L2正则
- LASSO 回归=线性回归+L1正则

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值