坐标转换
二维坐标系的变换分为旋转变换和平移变换
一、旋转变换
如下图所示,假设已知基坐标系XOY中的一点P(x, y), 坐标原点为O,P点的方向为θ\thetaθ,则可以求得P点在新坐标系X’OY’(新坐标系X’OY’是将原来的坐标系XOY绕原点O旋转了θ\thetaθ角度)下的坐标(x’, y’),:
x’ = OA + BC = x∗*∗cos(θ\thetaθ) + y∗*∗sin(θ\thetaθ)
y’ = PC - AB = y∗*∗cos(θ\thetaθ) - x∗*∗sin(θ\thetaθ);
同理:如果知道P点在坐标系X’OY’中的坐标(x’, y’), 可以求的P点在基坐标系XOY中的坐标(x, y):
x = x’∗*∗cos(−θ-\theta−θ) + y’∗*∗sin(−θ-\theta−θ);
y = y’∗*∗cos(−θ-\theta−θ) - x’∗*∗sin(−θ-\theta−θ);

二、平移变换
如下图所示,已知基坐标系XOY,把坐标系平移(a, b)得到一个新的坐标系X’OY’,如果基坐标系中一点P(x, y),跟随坐标系一起平移,那此时P点在基坐标系XOY中的坐标为(x+a, y+b);

三、旋转平移变换
旋转平移变换时以上两种情况的叠加,已知旋转平移后的坐标系X’OY’中的一点P’(x’, y’), 求P’在基坐标系中的坐标(x, y):

方法:
第一步先得到P’点在坐标系XO’下的坐标,第二步然后得到在坐标系XOY下的坐标。
x = x’∗*∗cos(θ\thetaθ) - y’∗*∗sin(θ\thetaθ) + a;
y = y’∗*∗cos(θ\thetaθ) + x’∗*∗sin(θ\thetaθ) + b;
本文详细介绍了二维坐标系中的坐标变换方法,包括旋转变换和平移变换,并结合实例解析了旋转平移变换的过程。
3628





