二维平面坐标转换

本文详细介绍了二维坐标系中的坐标变换方法,包括旋转变换和平移变换,并结合实例解析了旋转平移变换的过程。

坐标转换

二维坐标系的变换分为旋转变换和平移变换

一、旋转变换

如下图所示,假设已知基坐标系XOY中的一点P(x, y), 坐标原点为O,P点的方向为θ\thetaθ,则可以求得P点在新坐标系X’OY’(新坐标系X’OY’是将原来的坐标系XOY绕原点O旋转了θ\thetaθ角度)下的坐标(x’, y’),:
x’ = OA + BC = x∗*cos(θ\thetaθ) + y∗*sin(θ\thetaθ)
y’ = PC - AB = y∗*cos(θ\thetaθ) - x∗*sin(θ\thetaθ);
同理:如果知道P点在坐标系X’OY’中的坐标(x’, y’), 可以求的P点在基坐标系XOY中的坐标(x, y):
x = x’∗*cos(−θ-\thetaθ) + y’∗*sin(−θ-\thetaθ);
y = y’∗*cos(−θ-\thetaθ) - x’∗*sin(−θ-\thetaθ);
在这里插入图片描述

二、平移变换

如下图所示,已知基坐标系XOY,把坐标系平移(a, b)得到一个新的坐标系X’OY’,如果基坐标系中一点P(x, y),跟随坐标系一起平移,那此时P点在基坐标系XOY中的坐标为(x+a, y+b);
在这里插入图片描述

三、旋转平移变换

旋转平移变换时以上两种情况的叠加,已知旋转平移后的坐标系X’OY’中的一点P’(x’, y’), 求P’在基坐标系中的坐标(x, y):
在这里插入图片描述

方法:
第一步先得到P’点在坐标系XO’下的坐标,第二步然后得到在坐标系XOY下的坐标。
x = x’∗*cos(θ\thetaθ) - y’∗*sin(θ\thetaθ) + a;
y = y’∗*cos(θ\thetaθ) + x’∗*sin(θ\thetaθ) + b;

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值