本篇文章旨在通过详细的逐行注释,介绍如何分别使用 C/C++/Python 读取图片并获取指定像素位置的RGB值,其中C语言通过算法源码实现,C++和Python通过Opencv实现。
Python实现
from PIL import Image
import matplotlib.pyplot as plt
filename = "demo.jpg" # 图片文件路径
# 打开图像
image = Image.open(filename)
# 获取图像的宽度和高度
width, height = image.size
x = 100 # 像素位置的x坐标
y = 100 # 像素位置的y坐标
# 判断像素位置是否有效
if x >= 0 and x < width and y >= 0 and y < height:
# 获取指定像素位置的RGB值
r, g, b = image.getpixel((x, y))
print(f"Pixel value at ({x}, {y}): R={r}, G={g}, B={b}")
else:
print("Invalid pixel position.")
# 显示图像
plt.imshow(image)
plt.axis('off')
plt.show()
# 关闭图像
image.close()
C实现
#include <stdio.h>
#include "stb_image.h"
#define STB_IMAGE_IMPLEMENTATION
// Image结构体,用于存储图像相关的信息和数据
typedef struct {
int width; //图像宽度
int height; //图像高度
int channels; //图像通道数
unsigned char* data; //图像数据指针
} Image;
// 读取JPEG图像文件,并将图像数据存储在Image结构体
Image* readJPEG(const char* filename) {
int width, height, channels;
// 从指定的JPEG图像文件中加载图像数据
unsigned char* image_data = stbi_load(filename, &width, &height, &channels, 0);
// 如果加载失败,函数将打印错误消息并返回NULL
if (image_data == NULL) {
printf("Failed to load image file.\n");
return NULL;
}
// 如果加载成功,函数将分配一个Image结构体的内存空间,并将图像的宽度、高度、通道数和数据指针设置为相应的值
Image* image = (Image*)malloc(sizeof(Image));
image->width = width;
image->height = height;
image->channels = channels;
image->data = image_data;
return image;
}
// 获取指定像素位置的RGB值
void getPixelValue(Image* image, int x, int y, unsigned char* r, unsigned char* g, unsigned char* b) {
int index = (y * image->width + x) * image->channels;
*r = image->data[index]; // 红色通道值
*g = image->data[index + 1]; // 绿色通道值
*b = image->data[index + 2]; // 蓝色通道值
}
int main() {
const char* filename = "demo.jpg"; // 图片文件路径
// 读取JPEG图像
Image* image = readJPEG(filename); // 调用自定义函数readJPEG读取JPEG图像
if (image == NULL) {
return 1;
}
int x = 100; // 像素位置的x坐标
int y = 100; // 像素位置的y坐标
unsigned char r, g, b;
if (x >= 0 && x < image->width && y >= 0 && y < image->height) {
// 调用getPixelValue获取指定像素位置的RGB值
getPixelValue(image, x, y, &r, &g, &b);
printf("Pixel value at (%d, %d): R=%d, G=%d, B=%d\n", x, y, r, g, b);
} else {
printf("Invalid pixel position.\n");
}
stbi_image_free(image->data); // 释放图像数据内存
free(image); // 释放图像结构体内存
return 0;
}
C++实现
#include <iostream>
#include <opencv2/opencv.hpp>
int main() {
std::string filename = "demo.jpg"; // 图片文件路径
// 读取图像
cv::Mat image = cv::imread(filename);
if (image.empty()) {
std::cout << "Failed to load image file." << std::endl;
return 1;
}
int x = 100; // 像素位置的x坐标
int y = 100; // 像素位置的y坐标
// 判断像素位置是否有效
if (x >= 0 && x < image.cols && y >= 0 && y < image.rows) {
cv::Vec3b pixel = image.at<cv::Vec3b>(y, x);
int r = pixel[2];
int g = pixel[1];
int b = pixel[0];
std::cout << "Pixel value at (" << x << ", " << y << "): R=" << r
<< ", G=" << g << ", B=" << b << std::endl;
}
else {
std::cout << "Invalid pixel position." << std::endl;
}
// 显示图像
cv::imshow("Image", image);
cv::waitKey(0);
return 0;
}