问题背景
如果给你一个包含 5000 万个元素的数组,然后会有频繁的区间修改操作,比如让第 1 个数到第 1000万 个数每个数都加上 1,而且这种操作是频繁的。
此时,很容易想到的办法就是从 1 遍历到 1000万,每个加上 1,但如果这种操作很频繁的话,效率就可能会非常低下。
差分数组原理
假设现在有一个数组, n u m s = { 0 , 2 , 5 , 4 , 9 , 7 , 10 , 0 } nums=\{0, 2, 5, 4, 9, 7, 10, 0\} nums={0,2,5,4,9,7,10,0}
i n d e x index index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
d [ i ] d[i] d[i] | 0 | 2 | 5 | 4 | 9 | 7 | 10 | 0 |
那么差分数组是什么呢?
其实差分数组本质上也是一个数组,我们暂且定义差分数组为 d d d,差分数组 f f f 的大小和原来 d d d 数组大小一样,而且 f [ i ] = d [ i ] − d [ i − 1 ] f[i] = d[i] - d[i - 1] f[i]=d[i]−d[i−1],( i ≠ 0 i\neq0 i=0)。
它的含义是什么呢?就是原来数组 i i i 位置上的元素和 i − 1 i-1 i−1 位置上的元素作差,得到的值就是 d [ i ] d[i] d[i] 的值。
所以,上面数组对应的差分数组值如下图所示:
i n d e x index index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
d [ i ] d[i] d[i] | 0 | 2 | 5 | 4 | 9 | 7 | 10 | 0 |
f [ i ] f[i] f[i] | 0 | 2 | 3 | -1 | 5 | -2 | 3 | -10 |
那么构造这个数组有什么意义呢?
现在我们有这么一个区间操作,即在区间 [ 1 , 4 ] [1,4] [1,4] 上,所有的数值都加上 3.
i n d e x index index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
d [ i ] d[i] d[i] | 0 | 2+3 | 5+3 | 4+3 | 9+3 | 7 | 10 | 0 |
f [ i ] f[i] f[i] | 0 | 2+3 | 3 | -1 | 5 | -2-3 | 3 | -10 |
由上面的表格可以知道,这个操作在差分数组上,只影响到了差分数组区间其实位置和结束位置。
我们只需要修改一下差分数组的起始和结束位置,就可以记录这次的区间修改操作了。这样就可以把修改区间的时间复杂度 O ( n ) O(n) O(n) 降为 O ( 1 ) O(1) O(1)。
现在,我们如何根据差分数组 f f f 来推测 d d d 中某一个位置的值呢?
只需要求差分数组的前缀和即可。
差分数组定义
对于已知有 n n n 个元素的离线数列 d d d,我们可以建立记录它每项与前一项差值的差分数组 f f f,显然有:
f [ i ] = { d [ i ] , ( i = 0 ) d [ i ] − d [ i − 1 ] , ( 1 ≤ i < n ) f[i]=\left\{ \begin{aligned} &d[i], &(i = 0) \\ &d[i] - d[i - 1], &(1 \leq i \lt n) \end{aligned} \right. f[i]={d[i],d[i]−d[i−1],(i=0)(1≤i<n)
差分数组简单性质
- 计算数列各项的值:数组第 i i i 项的值是可以用差分数组的前 i i i 项的和计算的,即 前缀和。
- 计算数列每一项的前缀和:第 i i i 项的前缀和即为数列 f [ i ] f[i] f[i] 前 i i i 项的和。对差分数列求两次前缀和?
差分数组用途
- 快速处理区间加减操作:
假如现在对数列中区间
[
L
,
R
]
[L, R]
[L,R] 上的数加上
x
x
x,我们通过性质 1 知道,第一个受影响的差分数组中的元素为
f
[
L
]
f[L]
f[L],即令
f
[
L
]
+
=
x
f[L]+=x
f[L]+=x,那么后面数列元素在计算过程中都会加上
x
x
x;
最后一个受影响的差分数组中的元素为
f
[
R
]
f[R]
f[R],所以令
f
[
R
+
1
]
−
=
x
f[R+1]-=x
f[R+1]−=x,即可保证不会影响到
R
R
R 以后数列元素的计算。这样我们不必对区间内每一个数进行处理,只需要处理两个差分后的数即可;
- 询问区间和问题:
由性质 2 我们可以计算出数列各项的前缀和数组 s u m sum sum 各项的值;那么显然,区间 [ L , R ] [L, R] [L,R] 的和即为 a n s = s u m [ R ] − s u m [ L − 1 ] ans = sum[R] - sum[L - 1] ans=sum[R]−sum[L−1]
差分数组应用
对于预定记录
b
o
o
k
i
n
g
=
[
l
,
r
,
i
n
c
]
booking = [l, r, inc]
booking=[l,r,inc],我们需要让
d
[
l
−
1
]
d[l - 1]
d[l−1] 增加
i
n
c
inc
inc,
d
[
r
]
d[r]
d[r] 减少
i
n
c
inc
inc。特别地,当
r
r
r 为
n
n
n 时,我们无需修改
d
[
r
]
d[r]
d[r],
因为这个位置溢出了下标范围。如果求前缀和时考虑该位置,那么该位置对应的前缀和值必定为 0。
class Solution {
public int[] corpFlightBookings(int[][] bookings, int n) {
int[] nums = new int[n];
for (int[] booking : bookings) {
nums[booking[0] - 1] += booking[2];
if (booking[1] < n) {
nums[booking[1]] -= booking[2];
}
}
for (int i = 1; i < n; i++) {
nums[i] += nums[i - 1];
}
return nums;
}
}