一文搞懂差分数组

问题背景

如果给你一个包含 5000 万个元素的数组,然后会有频繁的区间修改操作,比如让第 1 个数到第 1000万 个数每个数都加上 1,而且这种操作是频繁的。

此时,很容易想到的办法就是从 1 遍历到 1000万,每个加上 1,但如果这种操作很频繁的话,效率就可能会非常低下。

差分数组原理

假设现在有一个数组, n u m s = { 0 , 2 , 5 , 4 , 9 , 7 , 10 , 0 } nums=\{0, 2, 5, 4, 9, 7, 10, 0\} nums={0,2,5,4,9,7,10,0}

i n d e x index index01234567
d [ i ] d[i] d[i]025497100

那么差分数组是什么呢?

其实差分数组本质上也是一个数组,我们暂且定义差分数组为 d d d,差分数组 f f f 的大小和原来 d d d 数组大小一样,而且 f [ i ] = d [ i ] − d [ i − 1 ] f[i] = d[i] - d[i - 1] f[i]=d[i]d[i1],( i ≠ 0 i\neq0 i=0)。

它的含义是什么呢?就是原来数组 i i i 位置上的元素和 i − 1 i-1 i1 位置上的元素作差,得到的值就是 d [ i ] d[i] d[i] 的值。

所以,上面数组对应的差分数组值如下图所示:

i n d e x index index01234567
d [ i ] d[i] d[i]025497100
f [ i ] f[i] f[i]023-15-23-10

那么构造这个数组有什么意义呢?

现在我们有这么一个区间操作,即在区间 [ 1 , 4 ] [1,4] [1,4] 上,所有的数值都加上 3.

i n d e x index index01234567
d [ i ] d[i] d[i]02+35+34+39+37100
f [ i ] f[i] f[i]02+33-15-2-33-10

由上面的表格可以知道,这个操作在差分数组上,只影响到了差分数组区间其实位置和结束位置。

我们只需要修改一下差分数组的起始和结束位置,就可以记录这次的区间修改操作了。这样就可以把修改区间的时间复杂度 O ( n ) O(n) O(n) 降为 O ( 1 ) O(1) O(1)

现在,我们如何根据差分数组 f f f 来推测 d d d 中某一个位置的值呢?

只需要求差分数组的前缀和即可。

差分数组定义

对于已知有 n n n 个元素的离线数列 d d d,我们可以建立记录它每项与前一项差值的差分数组 f f f,显然有:

f [ i ] = { d [ i ] , ( i = 0 ) d [ i ] − d [ i − 1 ] , ( 1 ≤ i < n ) f[i]=\left\{ \begin{aligned} &d[i], &(i = 0) \\ &d[i] - d[i - 1], &(1 \leq i \lt n) \end{aligned} \right. f[i]={d[i],d[i]d[i1],(i=0)(1i<n)

差分数组简单性质

  1. 计算数列各项的值:数组第 i i i 项的值是可以用差分数组的前 i i i 项的和计算的,即 前缀和
  2. 计算数列每一项的前缀和:第 i i i 项的前缀和即为数列 f [ i ] f[i] f[i] i i i 项的和。对差分数列求两次前缀和?

差分数组用途

  1. 快速处理区间加减操作:

假如现在对数列中区间 [ L , R ] [L, R] [L,R] 上的数加上 x x x,我们通过性质 1 知道,第一个受影响的差分数组中的元素为 f [ L ] f[L] f[L],即令 f [ L ] + = x f[L]+=x f[L]+=x,那么后面数列元素在计算过程中都会加上 x x x
最后一个受影响的差分数组中的元素为 f [ R ] f[R] f[R],所以令 f [ R + 1 ] − = x f[R+1]-=x f[R+1]=x,即可保证不会影响到 R R R 以后数列元素的计算。这样我们不必对区间内每一个数进行处理,只需要处理两个差分后的数即可;

  1. 询问区间和问题:

由性质 2 我们可以计算出数列各项的前缀和数组 s u m sum sum 各项的值;那么显然,区间 [ L , R ] [L, R] [L,R] 的和即为 a n s = s u m [ R ] − s u m [ L − 1 ] ans = sum[R] - sum[L - 1] ans=sum[R]sum[L1]

差分数组应用

leetcode 1109. 航班预订统计

对于预定记录 b o o k i n g = [ l , r , i n c ] booking = [l, r, inc] booking=[l,r,inc],我们需要让 d [ l − 1 ] d[l - 1] d[l1] 增加 i n c inc inc d [ r ] d[r] d[r] 减少 i n c inc inc。特别地,当 r r r n n n 时,我们无需修改 d [ r ] d[r] d[r]
因为这个位置溢出了下标范围。如果求前缀和时考虑该位置,那么该位置对应的前缀和值必定为 0。

class Solution {
    public int[] corpFlightBookings(int[][] bookings, int n) {
        int[] nums = new int[n];
        for (int[] booking : bookings) {
            nums[booking[0] - 1] += booking[2];
            if (booking[1] < n) {
                nums[booking[1]] -= booking[2];
            }
        }
        for (int i = 1; i < n; i++) {
            nums[i] += nums[i - 1];
        }
        return nums;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张无忌打怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值