文章目录
abstract
- DL@全加器种类
- 一位全加器的真值表
- 画卡诺图化简全加器表达式
- 一位全加器输出位和进位位逻辑函数表达式
全加器相关符号和逻辑图
![]() | ![]() |
---|---|
一位全加器符号 | 4位全加器符号 |
![]() | 一位全加器的组合逻辑电路图 |
4位逐位进位全加器
![]() | 4位逐位进位全加器,4组输入 A i , B i A_i,B_i Ai,Bi; i = 1 , ⋯ , 4 i=1,\cdots,4 i=1,⋯,4 |
4位超前进位加法器
一位全加器
真值表
-
C I CI CI A B C O CO CO F 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 -
其中
- CI:Carry-Input,表示低维向本为进位(做扩展之用,可以由多个一位全加器构成多位全加器)
- CO:Carry-Output,表示本位向高位(下一位)的进位,同样可以做扩展之用
-
输入位
- CI:低位向本位进位
- A:本位加数
- B:本位加数
输出位逻辑函数和标准与或式
- 全加器本位和:
F
=
A
⊕
B
⊕
C
I
F=A\oplus{B}\oplus{CI}
F=A⊕B⊕CI
- 有些地方用 S S S表示本位输出位
- 标准与或式 F = m 1 + m 2 + m 4 + m 7 F=m_1+m_2+m_4+m_7 F=m1+m2+m4+m7
- 向高位进位:
C
O
=
(
A
⊕
B
)
⋅
C
I
+
A
B
CO=(A\oplus{B})\cdot CI+AB
CO=(A⊕B)⋅CI+AB
- 标准与或式 C O = m 3 + m 5 + m 6 + m 8 CO=m_3+m_5+m_6+m_8 CO=m3+m5+m6+m8
卡诺图法决全加器逻辑函数的化简问题
全加器的逻辑函数化简
-
由全加器真值表画出各输出变量的卡诺图
-
设全加器的3个输入分别是 A , B , C i A,B,C_i A,B,Ci
-
两个输出分别是本位输出S;下一位进位 C o Co Co
-
分别绘制 S , C o S,Co S,Co关于输入 A , B , C i A,B,C_i A,B,Ci的卡诺图
- 它们的表格设计可以是一样的,因为它们的输入是一样的
- 但是1的填充要根据根据 S , C o S,Co S,Co各自的标准与或式的成真赋值来填充,例如 S = m 1 + m 2 + m 4 + m 7 S=m_1+m_2+m_4+m_7 S=m1+m2+m4+m7,则分别在 1 , 2 , 4 , 7 1,2,4,7 1,2,4,7(二进制分别为001,010,100,111)的坐标位置填充1
-
S = A B ‾ C ‾ i + A ‾ B C ‾ i + A ‾ B ‾ C i + A B C i C o = A B + A C i + B C i \begin{aligned} {S}&=A\overline{B}\ \overline{{C}}_i+\overline{{A}}B \overline{{C}}_{{i}} +\overline{{A}}\ \overline{{B}}C_{{i}}+{ABC}_{{i}}\\ {Co}&={AB}+{AC}_{{i}}+{BC}_{{i}} \end{aligned} SCo=AB Ci+ABCi+A BCi+ABCi=AB+ACi+BCi
- 由于 S S S的卡诺图的卡诺圈都是单格元素成圈,因此并不能相对于标准与或式作化简
- 而
C
o
Co
Co中的卡诺图是三个2格圈,多格卡诺圈内的与项间满足吸收律,起到了与项消元的化简效果
- C o Co Co的三个卡诺圈的化简分别为
- A B C i ‾ + A B C i AB\overline{C_i}+ABC_i ABCi+ABCi= A B AB AB
- A ‾ B C i + A B C i \overline{A}BC_i+ABC_i ABCi+ABCi= B C i BC_i BCi
- A B C i + A B ‾ C i ABC_i+A\overline{B}C_i ABCi+ABCi= A C i AC_i ACi
- 由同一律可知,对一个与或式 F = A 1 + ⋯ + A n F=A_1+\cdots+A_n F=A1+⋯+An,再设其中的任何一个与项 A i A_i Ai,则 F + A i = F F+Ai=F F+Ai=F,这是卡诺图之间能够部分重合的原因
其他形式:引入异或的表示式
-
S
=
A
B
‾
C
‾
i
+
A
‾
B
C
‾
i
+
A
‾
B
‾
C
i
+
A
B
C
i
S=A\overline{B}\ \overline{{C}}_i+\overline{{A}}B \overline{{C}}_{{i}} +\overline{{A}}\ \overline{{B}}C_{{i}}+{ABC}_{{i}}
S=AB Ci+ABCi+A BCi+ABCi
- = ( A B ‾ + A ‾ B ) C ‾ + ( A ‾ B ‾ + A B ) C i (A\overline{B}+\overline{A}B)\overline{C}+(\overline{A}\;\overline{B}+AB)C_i (AB+AB)C+(AB+AB)Ci
- = ( A ⊕ B ) C i ‾ + ( A ⊕ B ‾ ) C i (A\oplus{B})\overline{C_i}+(\overline{A\oplus{B}})C_i (A⊕B)Ci+(A⊕B)Ci
- = A ⊕ B ⊕ C i A\oplus{B}\oplus{C_i} A⊕B⊕Ci
- 若不以最简为目的,可作如下图所示的非标准卡诺圈,可以得到 C o Co Co的含异或的表达式.
-
C
o
Co
Co=
A
B
C
i
‾
+
A
‾
B
C
i
+
A
B
C
i
+
A
B
‾
C
i
AB\overline{C_i}+\overline{A}BC_i+ABC_i+A\overline{B}C_i
ABCi+ABCi+ABCi+ABCi
- = ( A B C i + A B C i ‾ ) + A ‾ B C i + A B ‾ C i (ABC_i+AB\overline{C_i})+\overline{A}BC_i+A\overline{B}C_i (ABCi+ABCi)+ABCi+ABCi
- = A B + A B ‾ C i + A ‾ B C i AB+A\overline{B}C_i+\overline{A}BC_i AB+ABCi+ABCi
- = A B + ( A B ‾ + A ‾ B ) C i AB+(A\overline{B}+\overline{A}B)C_i AB+(AB+AB)Ci
- = A B + ( A ⊕ B ) C i AB+(A\oplus B)C_i AB+(A⊕B)Ci