DL@全加器种类@一位全加器的真值表和相关逻辑函数

abstract

  • DL@全加器种类
    • 一位全加器的真值表
    • 画卡诺图化简全加器表达式
    • 一位全加器输出位和进位位逻辑函数表达式

全加器相关符号和逻辑图

在这里插入图片描述在这里插入图片描述
一位全加器符号4位全加器符号
在这里插入图片描述一位全加器的组合逻辑电路图

4位逐位进位全加器

在这里插入图片描述4位逐位进位全加器,4组输入 A i , B i A_i,B_i Ai,Bi; i = 1 , ⋯   , 4 i=1,\cdots,4 i=1,,4

4位超前进位加法器

  • 4位超前进位加法器

一位全加器

真值表

  • C I CI CIAB C O CO COF
    00000
    00101
    01001
    01110
    10001
    10110
    11010
    11111
  • 其中

    • CI:Carry-Input,表示低维向本为进位(做扩展之用,可以由多个一位全加器构成多位全加器)
    • CO:Carry-Output,表示本位向高位(下一位)的进位,同样可以做扩展之用
  • 输入位

    • CI:低位向本位进位
    • A:本位加数
    • B:本位加数

输出位逻辑函数和标准与或式

  • 全加器本位和: F = A ⊕ B ⊕ C I F=A\oplus{B}\oplus{CI} F=ABCI
    • 有些地方用 S S S表示本位输出位
    • 标准与或式 F = m 1 + m 2 + m 4 + m 7 F=m_1+m_2+m_4+m_7 F=m1+m2+m4+m7
  • 向高位进位: C O = ( A ⊕ B ) ⋅ C I + A B CO=(A\oplus{B})\cdot CI+AB CO=(AB)CI+AB
    • 标准与或式 C O = m 3 + m 5 + m 6 + m 8 CO=m_3+m_5+m_6+m_8 CO=m3+m5+m6+m8

卡诺图法决全加器逻辑函数的化简问题

全加器的逻辑函数化简

  • 由全加器真值表画出各输出变量的卡诺图

  • 设全加器的3个输入分别是 A , B , C i A,B,C_i A,B,Ci

  • 两个输出分别是本位输出S;下一位进位 C o Co Co

  • 分别绘制 S , C o S,Co S,Co关于输入 A , B , C i A,B,C_i A,B,Ci的卡诺图

    • 它们的表格设计可以是一样的,因为它们的输入是一样的
    • 但是1的填充要根据根据 S , C o S,Co S,Co各自的标准与或式的成真赋值来填充,例如 S = m 1 + m 2 + m 4 + m 7 S=m_1+m_2+m_4+m_7 S=m1+m2+m4+m7,则分别在 1 , 2 , 4 , 7 1,2,4,7 1,2,4,7(二进制分别为001,010,100,111)的坐标位置填充1
    • 在这里插入图片描述
  • S = A B ‾   C ‾ i + A ‾ B C ‾ i + A ‾   B ‾ C i + A B C i C o = A B + A C i + B C i \begin{aligned} {S}&=A\overline{B}\ \overline{{C}}_i+\overline{{A}}B \overline{{C}}_{{i}} +\overline{{A}}\ \overline{{B}}C_{{i}}+{ABC}_{{i}}\\ {Co}&={AB}+{AC}_{{i}}+{BC}_{{i}} \end{aligned} SCo=AB Ci+ABCi+A BCi+ABCi=AB+ACi+BCi

    • 由于 S S S的卡诺图的卡诺圈都是单格元素成圈,因此并不能相对于标准与或式作化简
    • C o Co Co中的卡诺图是三个2格圈,多格卡诺圈内的与项间满足吸收律,起到了与项消元的化简效果
      • C o Co Co的三个卡诺圈的化简分别为
      • A B C i ‾ + A B C i AB\overline{C_i}+ABC_i ABCi+ABCi= A B AB AB
      • A ‾ B C i + A B C i \overline{A}BC_i+ABC_i ABCi+ABCi= B C i BC_i BCi
      • A B C i + A B ‾ C i ABC_i+A\overline{B}C_i ABCi+ABCi= A C i AC_i ACi
      • 由同一律可知,对一个与或式 F = A 1 + ⋯ + A n F=A_1+\cdots+A_n F=A1++An,再设其中的任何一个与项 A i A_i Ai,则 F + A i = F F+Ai=F F+Ai=F,这是卡诺图之间能够部分重合的原因

其他形式:引入异或的表示式

  • S = A B ‾   C ‾ i + A ‾ B C ‾ i + A ‾   B ‾ C i + A B C i S=A\overline{B}\ \overline{{C}}_i+\overline{{A}}B \overline{{C}}_{{i}} +\overline{{A}}\ \overline{{B}}C_{{i}}+{ABC}_{{i}} S=AB Ci+ABCi+A BCi+ABCi
    • = ( A B ‾ + A ‾ B ) C ‾ + ( A ‾    B ‾ + A B ) C i (A\overline{B}+\overline{A}B)\overline{C}+(\overline{A}\;\overline{B}+AB)C_i (AB+AB)C+(AB+AB)Ci
    • = ( A ⊕ B ) C i ‾ + ( A ⊕ B ‾ ) C i (A\oplus{B})\overline{C_i}+(\overline{A\oplus{B}})C_i (AB)Ci+(AB)Ci
    • = A ⊕ B ⊕ C i A\oplus{B}\oplus{C_i} ABCi
  • 若不以最简为目的,可作如下图所示的非标准卡诺圈,可以得到 C o Co Co的含异或的表达式.
  • C o Co Co= A B C i ‾ + A ‾ B C i + A B C i + A B ‾ C i AB\overline{C_i}+\overline{A}BC_i+ABC_i+A\overline{B}C_i ABCi+ABCi+ABCi+ABCi
    • = ( A B C i + A B C i ‾ ) + A ‾ B C i + A B ‾ C i (ABC_i+AB\overline{C_i})+\overline{A}BC_i+A\overline{B}C_i (ABCi+ABCi)+ABCi+ABCi
    • = A B + A B ‾ C i + A ‾ B C i AB+A\overline{B}C_i+\overline{A}BC_i AB+ABCi+ABCi
    • = A B + ( A B ‾ + A ‾ B ) C i AB+(A\overline{B}+\overline{A}B)C_i AB+(AB+AB)Ci
    • = A B + ( A ⊕ B ) C i AB+(A\oplus B)C_i AB+(AB)Ci
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值