Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

摘要

边框回归是目标检测的关键步骤。在现有的方法中,虽然在边框回归中广泛采用了n范数损失,但并不是针对评价指标IoU进行定制的。近年来,人们提出了IoU损失和G-IoU损失两种可以有利于提升IoU指标的方法,但仍存在收敛速度慢、回归不准确等问题。在这篇论文中,通过合并预测框和目标框之间的归一化距离,我们提出了一种Distance -IoU损失,它在训练过程中比IoU和GIoU损失收敛得更快。此外,本文还总结了边界框回归中的三个几何因素:重叠面积,中心点距离和长宽比。在此基础上,提出了一个Complete IoU (CIoU)损失,从而可以更快的收敛并得到更好的性能。通过将DIoU和CIoU损失合并到最先进的目标检测算法中,例如YOLO v3、SSD和Faster RCNN,我们在IoU度量和GIoU度量方面都取得了显著的性能改善。另外,DIoU可以很容易的被引入到非最大抑制(non-maximum suppression, NMS)中作为判据,进一步促进了性能的提升。

创新点:

1. A Distance-IoU loss, i.e., DIoU loss, is proposed for bounding box regre

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Siou Loss是一种用于边界框回归的损失函数,它比传统的平方损失函数更强大。 边界框回归是目标检测任务中的重要组成部分,它的目标是预测图像中物体的位置和大小。传统的平方损失函数在边界框回归中常被使用,但它在处理物体尺寸变化和不均衡数据上存在一些问题。而Siou Loss通过解决这些问题,提供了更强大的学习能力。 Siou Loss通过引入IoU(Intersection over Union)来度量预测边界框和真实边界框之间的相似度。IoU是指预测边界框和真实边界框的交集区域与并集区域的比值,它能更好地描述边界框的匹配度。 Siou Loss不仅考虑了预测边界框和真实边界框之间的位置差异,还考虑了它们之间的尺度差异。这使得Siou Loss在处理物体尺寸变化时更加灵活,能够更好地适应不同尺寸的物体。 此外,Siou Loss还能够解决数据不均衡的问题。在目标检测任务中,负样本(非物体区域)通常远远多于正样本(物体区域),这导致传统的平方损失函数在训练过程中很难平衡正负样本之间的关系。而Siou Loss通过IoU作为权重,可以有效地平衡正负样本之间的重要性,提高了模型对于正样本的关注程度。 综上所述,Siou Loss作为一种更为强大的学习方法,在边界框回归任务中具有优势。它通过引入IoU来度量相似度,并解决了尺度变化和数据不均衡的问题,提高了模型的学习能力和预测准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值