二次约束二次规划(QCQP)问题的SOCP形式转化
1. 问题描述
1.1. QCQP的一般形式:
min 1 2 x ⊤ Q 0 x + c ⊤ x s . t . x ⊤ Q i x + a i ⊤ x ≤ b i , i = 1 , … , m \begin{aligned} \min \quad &\frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}_0\mathbf{x} + \mathbf{c}^{\top}\mathbf{x} \\ \mathrm{s.t.} \quad &\mathbf{x}^{\top}\mathbf{Q}_i\mathbf{x} + \mathbf{a}_i^{\top}\mathbf{x} \leq b_i, \; i = 1, \dots, m \end{aligned} mins.t.21x⊤Q0x+c⊤xx⊤Qix+ai⊤x≤bi,i=1,…,m
其中, Q 0 ∈ S + + n \mathbf{Q}_0 \in \mathbb{S}^{n}_{++} Q0∈S++n(表示正定对称矩阵), c ∈ R n \mathbf{c} \in \mathbb{R}^n c∈Rn。 Q i ∈ S + + n \mathbf{Q}_i \in \mathbb{S}^{n}_{++} Qi∈S++n, a i ∈ R n \mathbf{a}_i \in \mathbb{R}^n ai∈Rn, b i ∈ R ( i = 1 , … , m ) b_i \in \mathbb{R} (i = 1, \dots, m) bi∈R(i=1,…,m)。
1.2. SOCP的一般形式:
min c ⊤ x s . t . ∥ A i x + b i ∥ 2 ≤ c i ⊤ x + d i , i = 1 , … , m \begin{aligned} \min \quad &\mathbf{c}^{\top} \mathbf{x} \\ \mathrm{s.t.} \quad & \left\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\right\|_2 \leq \mathbf{c}_i^{\top} \mathbf{x} + d_i, i = 1, \dots, m \end{aligned} mins.t.c⊤x∥Aix+bi∥2≤ci⊤x+di,i=1,…,m
2. 目标函数的配方
QCQP的目标函数 1 2 x ⊤ Q x + c ⊤ x \frac{1}{2}\mathbf{x}^{\top}\mathbf{Qx} + \mathbf{c}^{\top}\mathbf{x} 21x⊤Qx+c⊤x是二次的,我们可以对其进行配方。
首先由Cholesky分解将矩阵 Q \mathbf{Q} Q分解为 Q = ( Q 1 2 ) ⊤ Q 1 2 \mathbf{Q}=\left( \mathbf{Q}^{\frac{1}{2}} \right) ^{\top}\mathbf{Q}^{\frac{1}{2}} Q=(Q21)⊤Q21:
1 2 x ⊤ Q 1 2 Q 1 2 x + c ⊤ x \frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}^{\frac{1}{2}}\mathbf{Q}^{\frac{1}{2}}\mathbf{x} + \mathbf{c}^{\top}\mathbf{x} 21x⊤Q21Q21x+c<