【凸优化】二次约束二次规划(QCQP)问题转化为二阶锥规划(SOCP)

二次约束二次规划(QCQP)问题的SOCP形式转化

1. 问题描述

1.1. QCQP的一般形式:

min ⁡ 1 2 x ⊤ Q 0 x + c ⊤ x s . t . x ⊤ Q i x + a i ⊤ x ≤ b i ,    i = 1 , … , m \begin{aligned} \min \quad &\frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}_0\mathbf{x} + \mathbf{c}^{\top}\mathbf{x} \\ \mathrm{s.t.} \quad &\mathbf{x}^{\top}\mathbf{Q}_i\mathbf{x} + \mathbf{a}_i^{\top}\mathbf{x} \leq b_i, \; i = 1, \dots, m \end{aligned} mins.t.21xQ0x+cxxQix+aixbi,i=1,,m

其中, Q 0 ∈ S + + n \mathbf{Q}_0 \in \mathbb{S}^{n}_{++} Q0S++n(表示正定对称矩阵), c ∈ R n \mathbf{c} \in \mathbb{R}^n cRn Q i ∈ S + + n \mathbf{Q}_i \in \mathbb{S}^{n}_{++} QiS++n a i ∈ R n \mathbf{a}_i \in \mathbb{R}^n aiRn b i ∈ R ( i = 1 , … , m ) b_i \in \mathbb{R} (i = 1, \dots, m) biR(i=1,,m)

1.2. SOCP的一般形式:

min ⁡ c ⊤ x s . t . ∥ A i x + b i ∥ 2 ≤ c i ⊤ x + d i , i = 1 , … , m \begin{aligned} \min \quad &\mathbf{c}^{\top} \mathbf{x} \\ \mathrm{s.t.} \quad & \left\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\right\|_2 \leq \mathbf{c}_i^{\top} \mathbf{x} + d_i, i = 1, \dots, m \end{aligned} mins.t.cxAix+bi2cix+di,i=1,,m

2. 目标函数的配方

QCQP的目标函数 1 2 x ⊤ Q x + c ⊤ x \frac{1}{2}\mathbf{x}^{\top}\mathbf{Qx} + \mathbf{c}^{\top}\mathbf{x} 21xQx+cx是二次的,我们可以对其进行配方。
首先由Cholesky分解将矩阵 Q \mathbf{Q} Q分解为 Q = ( Q 1 2 ) ⊤ Q 1 2 \mathbf{Q}=\left( \mathbf{Q}^{\frac{1}{2}} \right) ^{\top}\mathbf{Q}^{\frac{1}{2}} Q=(Q21)Q21

1 2 x ⊤ Q 1 2 Q 1 2 x + c ⊤ x \frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}^{\frac{1}{2}}\mathbf{Q}^{\frac{1}{2}}\mathbf{x} + \mathbf{c}^{\top}\mathbf{x} 21xQ21Q21x+c<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值