2023年秋,清华大学启动“人工智能赋能教学试点课程工作方案”,展现了其在教育数字化和人工智能技术应用方面的前瞻性和创新精神。
这一方案不仅推动了人才培养体系的重塑,也为高等教育教学变革开辟了新篇章。
以下是一些关键点的总结:
1. 教育数字化的重要性:教育数字化被视为开辟教育发展新赛道和塑造教育发展新优势的重要途径。
2. 人工智能技术的深度融合:清华大学通过与智谱华章公司合作,利用千亿参数多模态大模型GLM,推动信息技术与教育教学的深度融合。
3. 智能助教和知识图谱的应用:通过开发智能助教和知识图谱等多元化教学场景,清华大学为不同学科领域提供了服务,提升了教学效率和质量。
4. 智能助教系统的实际应用案例:
-
“新城市科学”课程:通过智能助教系统,答题正确率从80%提升至95%,并提供了详细的答题解释,促进了学生的个性化学习。
-
“化工热力学”课程:智能助教系统作为辅助工具,提升了学生的学习体验和课程参与度。
-
“写作与沟通”课程:智能助教系统的设计考虑了写作课的教学需求,提供了新的视角和工具。
-
“心智、个体与文化”课程:智能助教系统提供了高效的写作评价和反馈,帮助学生提升写作水平。
-
“环境决策实践”课程:智能助教系统探索了互动式知识获取模式,提升了学生的课程参与度。
-
“大学物理”和“电路原理”课程:通过智能助教系统,提供了代码形式的解答和答疑解惑,补充了传统文字解答方式的不足。
5. 未来展望:清华大学计划在2024年开展100门人工智能赋能教学试点课程,利用人工智能辅助或深度介入课程,持续创新教学场景,提升教与学效率与质量,为高等教育的创新与发展注入新活力。
这一方案不仅展示了人工智能技术在教育领域的应用潜力,也为其他教育机构提供了宝贵的经验和参考。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。