处理超出上下文窗口限制的长文本一直是大模型面临的关键挑战之一。传统方法是要么训练支持更长上下文的模型或是通过RAG的方式变通实现,效果和效率往往难以兼顾。近期,北师大研究团队发表了一篇论文《Infinite Retrieval: Attention Enhanced LLMs in Long-Context Processing》,提出了一种名为 Infinite Retrieval 的新方法,该方法无需额外训练,即可赋能现有模型理论上就可以处理无限长度的文本。
InfiniRetri 的核心在于一个关键发现:LLMs 在执行推理任务时展现出的注意力分配模式,与信息检索的过程存在内在的一致性,因此也叫“注意力即检索”。 形象地说,就像人类在阅读长篇书籍时,大脑会对关键信息给予更高的关注。研究发现,在 LLMs 的深层网络中,注意力机制能够更精准地聚焦于与当前任务相关的上下文片段。
基于这一洞察,InfiniRetri 采用了一种无需额外训练的迭代式处理流程。面对超长文本,它将其划分为若干连续的片段,并逐一输入 LLM 进行处理。关键的创新在于,InfiniRetri 在处理每个文本片段后,会利用 LLM 最后一层的注意力分布信息,识别并保留那些被模型认为最相关的句子。 这些被“重点关注”的句子被存储在一个外部缓存中,如同大脑在阅读过程中记住的关键情节。
在处理后续的文本片段时,InfiniRetri 会将缓存中保留的相关句子与当前片段进行合并,共同作为 LLM 的输入。这种机制使得 LLM 在处理局部文本时,能够“回忆”起先前被认为重要的上下文信息,从而在整体上理解和处理更长的文本。与直接缓存模型内部状态不同,InfiniRetri 仅缓存关键的句子文本,这更类似于人类记忆语义信息而非底层的神经元激活。
在模拟“大海捞针”式信息检索的 NIH 任务中,该方法使一个轻量级的模型(0.5B 参数的 Qwen2.5-0.5B)在 100 万 tokens 的超长文本中实现了 100% 的检索准确率,显著超越了现有技术。在更贴近实际应用的 LongBench 基准测试中,InfiniRetri 同样在多个主流 LLMs 上取得了显著的性能提升,尤其在多文档问答等需要整合多来源信息的任务中表现突出,Qwen2-7B-Instruct 在 HotpotQA 上的提升高达 288%。此外,通过选择性地缓存和处理关键信息,有效降低了推理延迟和计算资源消耗。
小结
InfiniRetri 的核心创新在于发掘并利用了 LLMs 固有的注意力机制进行信息检索,为长文本处理提供了一种全新的、高效且无需额外训练的解决方案。它表明,提升 LLMs 在长上下文场景下的能力,并非仅依赖于扩大模型窗口,增强模型在有限窗口内的“内在理解”能力同样至关重要。
同时,InfiniRetri 并非全能, 虽然它在长文本检索和问答方面表现出色,但由于依赖局部注意力信息迭代地“回忆”关键信息,对于需要全面理解整个长文本才能完成的任务,例如长文档摘要,它无法一次性获取所有必要信息,从而导致性能提升相对有限。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。