什么是AIGC?
AIGC是人工智能生成内容(Artificial Intelligence Generated Content)的缩写。它指的是使用人工智能技术自动生成文本、图像、音频、视频等内容的过程。
AIGC技术可以应用于多种场景,包括但不限于:
-
文本生成:自动撰写新闻报道、生成创意写作、自动回答用户问题等。
-
图像生成:创建艺术作品、设计图案、生成用户定制的图片等。
-
音频生成:合成语音、生成音乐、制作有声读物等。
-
视频生成:自动剪辑视频、生成动画、制作虚拟角色等。
说白了,AIGC 就是让 AI 帮助AI工作者生成各种内容。哪些各种内容呢? 就是文字、图片、音频、视频这些。要是能直接生成一个小目标该多好呀!
国产动画片《干秋诗颂》,它是央视首部利用AI技术创作的古诗词动画片,以小学课本中的上百直古诗词为创作素材,采用水墨国风的视觉风格,通过AI技术从美术设计到动效生成、后期制作,将诗词的意境和情怀生动呈现。
AI 为什么能 GC(生成内容)呢?
那是因为科学家们训练 AI 时,给它以海量的文字、图片、音频、视频等各种内容的知识库。
就像一个孩子从小开始读书,随之大量知识的输入,慢慢地表达和自身修养会越来越高,越来越好。
AI 也在不断成长,早期 AI 只会干一件事;现在呢,啥都会了,听说读写,样样精通,简直就是个全能选手,这种AI俗称多模态。
随着训练数据越来越多,AI的生成能力越来越强,甚至表现出了高阶的推理能力,有了逻辑思考能力。
现在我们认为 AI 没有情感,但以后呢,真的说不准。
智能体也就是基于 AI 的生成能力和思考能力,我们可以将它的这些能力打包起来,做成一个智能体,或者叫 AI 机器人,来帮我们完成特定的任务。
AI智能体与大模型的边界
Al Agent (Al智能体) = LLM(大模型) + Planning(规划) + Memory(记忆) + Tools(工具)
大模型是大脑,加上眼口手耳后,就是一个AI智能体(机器人)。
Al Agent 会借助 LLM 的推理能力,将问题予以拆解,拆分成一个个的小问题,同时明确这些小问题之间的先后关联,而后依照顺序,调用 LLM、RAG 或者外部工具,来解决每一个小问题,直至解决初始的问题。
智能体(Agent)
1.定义与特点:
智能体是一种能够感知环境、做出决策并执行行动的自主实体。它具备自主性、交互性、反应性和主动性等特点。
智能体的设计目标是实现对环境的有效互动,能够根据当前状态和未来预期结果调整其行为策略,以实现特定的目标。
智能体的工作原理包括感知、决策和执行三个过程。
2.功能与应用:
智能体可以作为通用问题解决器,具备规划思考能力、记忆能力、使用工具函数的能力,能自主完成给定任务。在AGI时代到来之前,智能体是目前大模型应用落地的最佳载体。
例如,在智能客服场景中,智能体可以通过感知模块收集用户的问题和需求,并结合大模型的处理能力进行推理和决策,生成合适的回复或解决方案。
大模型
定义与特点:
大模型是指具有数千万甚至数亿参数的深度学习模型,通常具有庞大的参数规模和深度结构。这些模型利用海量的数据和计算资源来训练,以提高其泛化能力和准确性。
功能与应用:
大模型广泛应用于自然语言处理、图像识别、语音识别等领域,取得了显著的成果。例如,在自然语言处理(NLP)任务中,大模型具有强大的文本生成和理解能力,能够根据输入的文本生成高质量的回复或摘要。
智能体与大模型的联系
1.互补性
大模型可以作为智能体的一部分,用来处理智能体感知到的数据,并帮助智能体做出更准确的决策。
在自动驾驶场景中,智能体需要感知道路环境、识别交通信号和障碍物等信息,而大模型则可以利用这些信息进行深度学习和预测,从而为智能体提供更为准确和可靠的决策支持。
2.共同发展:
智能体的自主性和交互性使得它能够在各种复杂环境中灵活应对各种挑战;而大模型的信息处理和知识产出能力则为智能体提供了更为丰富和准确的数据支持。
提示词与AI智能体的异同
提示词(Prompt) 和 AI智能体(Agent)在人工智能领域中扮演着不同的角色。
它们在功能和应用上存在明显的差异:
定义上的差异
提示词:在AI领域,特别是在自然语言处理(NLP)中,提示词是一种输入形式,用于引导或激发A!模型生成特定的输出。它是一种交互手段,帮助用户更有效地与模型沟通,获取所需信息或执行特定任务。
AI智能体:智能体是一种具有一定智能的系统,能够感知其环境,做出决策,并在环境中执行行动。智能体可以是自主的,具有学习和适应的能力,能够执行复杂任务。
功能上的差异
提示词:主要功能是作为用户与A|模型之间的桥梁,帮助模型理解用户的意图,并生成符合用户需求的输出。提示词通常用于指导模型的生成过程,但本身并不具备执行复杂任务的能力。
AI智能体:具备感知、决策和行动的能力,能够根据环境变化自主地做出反应。智能体可以执行包括但不限于数据分析、问题解决、任务规划和执行等复杂任务。
应用场景的差异
提示词:常用于聊天机器人、内容生成、代码补全、教育辅导等场景,主要目的是提高用户与A!模型交互的效率和准确性。
AI智能体:应用范围更广,可以用于自动驾驶、游戏A、智能客服、推荐系统、机器人控制等领域,需要处理更复杂的环境交互和决策制定。
交互方式的差异
AI智能体:与环境的交互更为复杂,可能包括感知输入、内部状态更新、决策制定和执行动作等多个步骤。
提示词:通常是一个简短的文本输入,用于激发AI模型的特定响应或行为。
自主性的差异
提示词:不具备自主性,它只是用户意图的一种表达方式,需要AI模型来解释和响应。
AI智能体:具有一定程度的自主性,能够独立感知环境、做出决策并执行行动。
学习和适应能力的差异
提示词:本身不涉及学习或适应过程,它只是一次性的输入。
AI智能体:可能具备学习和适应能力,能够根据经验改进其行为和决策过程。
一句话总结,Al智能体底层通过调用大模型实现感知、决策和执行的智能 Bot,通过提示词优化反馈结构,达到预期效果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。