【LLM】参数高效微调-Prefix Tuning、Adapter Tuning、LoRA

回顾一下三种参数高效微调方法-Prefix Tuning、Adapter Tuning、LoRA

Prefix Tuning

在这里插入图片描述

Prefix Tuning

在prefix-tuning之前的工作主要是人工设计离散的template或者自动化搜索离散template,问题在于最终的性能对人工设计的template的特别敏感:加一个词或者少一个词,或者变动位置,都会造成很大的变化,所以这种离散化的token的搜索出来的结果可能并不是最优的。Prefix Tuning方法使用连续的virtual token embedding来代替离散的token,且与Full-finetuning更新所有参数的方式不同。简而言之就是Prefix Tuning在原始文本进行词嵌入之后,在前面拼接上一个前缀矩阵,或者将前缀矩阵拼在模型每一层的输入前。

Prefix Tuning的两种示例

Prefix Tuning相关设置:

  • 前缀初始化时,[前缀长度, 嵌入维度],其中嵌入维度与模型词嵌入的维度相同。前缀长度可以根据任务需求进行调整。

  • 更长的前缀意味着更多的可微调参数,效果也变好,不过长度还是有阈值限制的(table-to-text是10,summarization是200)

(上):针对表格描述(Table-to-text)、文章总结(Summarization)、翻译(Translation)三种任务,Fine-Tuning需微调三个LM,且需保存每个特定任务的LM参数,臃肿和低效;(下):然而,Prefix Tuning要清爽得多,针对三类任务,只需训练三个Prefix生成器,原LM参数可直接复用。

推理阶段,只需要将任务相关的输入序列与训练好的前缀嵌入进行拼接,然后输入到模型中即可得到预测结果。

代码过程,下面这个类旨在将输入的前缀有效地编码为适合后续处理的向量形式。

参考:https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py

import torch         class PrefixEncoder(torch.nn.Module):       r'''       The torch.nn model to encode the prefix          Input shape: (batch-size, prefix-length)          Output shape: (batch-size, prefix-length, 2*layers*hidden)       '''       def __init__(self, config):           super().__init__()           self.prefix_projection = config.prefix_projection           if self.prefix_projection:               # Use a two-layer MLP to encode the prefix               self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)               self.trans = torch.nn.Sequential(                   torch.nn.Linear(config.hidden_size, config.prefix_hidden_size),                   torch.nn.Tanh(),                   torch.nn.Linear(config.prefix_hidden_size, config.num_hidden_layers * 2 * config.hidden_size)               )           else:               self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)          def forward(self, prefix: torch.Tensor):           if self.prefix_projection:               prefix_tokens = self.embedding(prefix)               past_key_values = self.trans(prefix_tokens)           else:               past_key_values = self.embedding(prefix)           return past_key_values   

Adapter Tuning

通过引入少量可训练参数(适配器模块)来进行特定任务的优化。适配器模块是一组轻量级的参数,被添加到模型的中间层,以保护原有预训练模型的参数。这种方法的目标是在不改变整体模型结构的情况下,通过调整适配器模块的参数来适应新任务。

Adapter Tuning针对Transformer的添加方式。左:针对每个Transformer层,Adapter参数在两个残差前插入。在Tuning中,图中的绿色模块是可训练的,其他模块的参数固定。

Adapter Tuning的核心思想是在预训练模型的中间层中插入小的可训练层或“适配器”。这些适配器通常包括一些全连接层、非线性激活函数等,它们被设计用来捕获特定任务的知识,而不需要对整个预训练模型进行大规模的微调。

下面举个例子看下Adapter Tuning过程:

Adapters还可以和HuggingFace的Transformer包无缝整合,可以直接加载HuggingFace上的模型进行Adapter微调。

以文本分类为例,BERT预训练模型加载:

from transformers import AutoTokenizer, AutoConfig   from adapters import AutoAdapterModel       model_path = "bert-base-chinese"   tokenizer = AutoTokenizer.from_pretrained(model_path)   config = AutoConfig.from_pretrained(model_path, num_labels=3)   model = AutoAdapterModel.from_pretrained(model_path, config=config)   

在这里插入图片描述

然后为预训练模型设置适配器。这里需要注意,在Adapters包里,本节所介绍的适配器结构被称为瓶颈适配器(Bottleneck adapters)(如上图1),使用BnConfig类来配置。这里需要为适配器取一个名字,之后可以通过这个名字来激活或者禁用这个适配器。

from adapters import BnConfig      adapter_name = "trouble_shooting"   # 添加一个新的adapter,类型为Bn adapter,即bottleneck adapter   config = BnConfig(mh_adapter=True, output_adapter=True, reduction_factor=16, non_linearity="relu")      model.add_adapter(adapter_name, config=config)   # 添加一个分类头   model.add_classification_head(adapter_name,num_labels=3, activation_function="relu")   # 激活这个adapter   model.train_adapter(adapter_name)   

主要参数:

  • mh_adapter:设置是否要在多头注意力模块之后添加适配器。

  • output_adapter:设置是否要在Transformer模块的输出层添加适配器。

  • reduction_factor:模型参数量与需调整的适配器参数量的比值。

  • non_linearity:设置非线性部分使用的激活函数。

trainer训练模型:

from transformers import TrainingArguments   from adapters import AdapterTrainer   training_args = TrainingArguments(       num_train_epochs=5,       per_device_train_batch_size = 16,       logging_steps=2,       save_steps = 10,       gradient_accumulation_steps = 4,       output_dir="bert-adapter",   )       trainer = AdapterTrainer (   model=model, tokenizer=tokenizer   args=training_args, train_dataset=train_dataset,       optimizers=(optimizer, None)   )   trainer.train() # 开始训练   trainer.save_model() # 保存训练好的模型   

LoRA

矩阵的秩(Rank):衡量了矩阵中行或列向量的线性无关性

低秩:秩远小于矩阵的行数或列数。

在这里插入图片描述
LoRA(Low-Rank Adaptation)假设模型在任务适配过程中权重的改变量可以是低秩的。 LoRA通过在预训练模型中引入一个额外的线性层(由低秩矩阵A和B组成),并使用特定任务的训练数据来微调这个线性层,从而实现对模型的高效微调。

假设预训练参数为,那么全量微调时的更新量自然也 是一个矩阵,LoRA将更新量约束为低秩矩阵来降低训练时的参数量,即设,其中以及,用新的替换模型原参数,并固定不变,只训练,如下图所示:

为了使得LoRA的初始状态跟预训练模型一致,通常会将之一全零初始化,这样可以得到,那么初始的就是。但这并不是必须的,如果都是非全零初始化,那么我们只需要将设置为

也就是说将固定不变的权重从换为,同样可以满足初始等于这一条件。

影响LoRA微调的相关参数如下:

  1. 秩(Rank)

    参数:lora_rank

    描述:秩是LoRA中最重要的参数之一,它决定了低秩矩阵的维度。秩的大小直接影响模型的性能和训练时间。

    常用值:对于小型数据集或简单任务,秩可以设置为1或2;对于更复杂的任务,秩可能需要设置为4、8或更高。

  2. 缩放系数(Alpha)

    参数:lora_alpha

    描述:缩放系数用于在训练开始时对低秩矩阵的更新进行缩放,以确保训练过程的稳定性。

    常用值:缩放系数的具体值取决于秩的大小和任务的复杂度。

  3. Dropout系数

    参数:lora_dropout

    描述:Dropout是一种正则化技术,用于防止模型过拟合。在LoRA Fine-tuning中,Dropout系数决定了在训练过程中随机丢弃低秩矩阵中元素的概率。

    常用值:Dropout系数的常用值范围在0到1之间,具体值取决于模型的复杂度和数据的规模。

  4. 学习率

    参数:learning_rate

    描述:学习率决定了模型在训练过程中权重更新的步长。适当的学习率可以帮助模型在训练过程中更快地收敛到最优解。

    常用值:学习率的具体值取决于多个因素,包括模型的复杂度、数据的规模以及训练过程中的其他超参数设置。

LoRA微调如今是高效微调LLM的重要手段,PEFT库也集成了相关方法: PEFT库:https://github.com/huggingface/peft

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值