从0到1开发AI Agent(智能体):基于大模型的AI Agent技术框架

AI Agent,即人工智能代理,一般直接叫做智能体。它是一种能够感知环境、做出决策并采取行动的系统。这些系统能够执行被动的任务,也能够主动寻找解决问题的方法,适应环境的变化,并在没有人类直接干预的情况下做出决策。

LLMs 的强大推理能力让 AI Agent 的表现跨越式提升。让Agent 向“决策性”转型。AI Agent的技术框架涉及多个层面,包括规划、记忆、工具和行动,其中规划、记忆、工具是AI Agent的3个核心组件。

1. AI Agent的3个核心组件

Planning 规划 : Agent需要具备规划(同时也包含决策)能力,以有效地执行复杂任务。这涉及子目标的分解(Subgoal Decomposition)、连续的思考(即思维链)、自我反思和批评(Self-critics),以及对过去行动的反思(Reflection)

Memory 记忆 : 包含短期记忆和长期记忆两部分。短期记忆与上下文学习有关,属于提示工程的一部分,而长期记忆涉及信息的长时间保留和检索,通常利用外部向量存储和快速检索。

Tool 工具 : 包括 Agent 可能调用的各种工具,如日历、计算器、代码解释器和搜索功能等。由于大模型一旦完成预训练,其内部能力和知识边界就基本固定下来,而且难以拓展,因此这些工具显得尤其重要。这些工具可以扩展Agent的能力,使其能够执行更复杂的任务,

Agent基于规划和记忆来执行具体的行动。这可能包括与外部世界互动,或者通过调用工具来完成一个动作(任务)。

图1:组件

AI Agent 是通过一个完整的流程互相关联各个组件来处理和解决任务,见图2。

接收任务(Task Receiving) : Agent首先通过读入提示(即图中的查询+附加知识 +人设指示)来接收需要处理的任务。

记忆更新(Memory Update ) : Agent 根据具体任务更新系统的记忆,确保所有相关信息都是最新的,以便在处理任务时使用。

记忆检索(Memory Retrieval) : 由于记忆可能非常庞大,因此需要从记忆中检索相关信息,或者在必要时进行截断,以便高效处理信息。

任务规划(Task Plan) : 基于提供的结构化工具、记忆和查询提示,大模型生成一个包含任务名称的计划,计划包含后续步骤和动作,其中说明了需要调用哪些工具及参数。

工具执行(Tool Execution) : 如果在“任务规划”模块产生的是任务完成的信号那么循环将终止,并提示Agent任务完成,可以生成结论,否则,系统将调用并执行指定的工具。大模型在观察工具生成的指定格式的结果后,将其整合到任务记忆中。

总结(Concluding): 系统会总结出最终的答案,以完成整个任务处理过程

图2:流程

可以看出Agent执行任务时的循环非常重要。这个循环促使 Agent 不断反思,并根据当前状况判断是否完成任务。

2. AI Agent的规划能力

一个复杂的任务通常涉及许多步骤。AI Agent需要知道它们是什么,并且提前规划。

2.1 Task Decomposition 任务分解

思维链(Chain of thought ): 模型被指示“逐步思考”,以利用更多的测试时间计算将困难任务分解成更小、更简单的步骤。CoT 将大任务转化为多个可管理的任务,并揭示了模型思考过程。

思维树(Tree of Thoughts,ToT) : 通过在每个步骤探索多种推理可能性,进而形成一种树状结构。思维树可以用不同的搜索方法,例如广度优先搜索(Breadth-First Search,BFS)深度优先搜索(Depth-First Search,DFS),并通过提示或投票来评估每个步骤

2.2 Self-Reflection 自我反思

自我反思是自主代理通过细化过去的行动决策和纠正之前的错误来迭代改进的重要方面。它在试错不可避免的真实世界任务中扮演着关键角色。

ReAct : 这个框架通过结合特定任务的动作和语言空间,让模型能够与环境交互,并生成推理轨迹。

Reflexion : 这是一个使 Agent 具备动态记忆和自我反思能力的框架。它通过帮助 Agent 回顾过去的行动来提高推理能力。

CoH(Chain of Hindsight ) : 这个方法通过向大模型展示一系列带有反馈的过去输出来鼓励大模型改进自己的输出

3. AI Agent的记忆机制

大模型形成记忆的机制可以总结为以下几种:

第一种是通过预训练形成记忆。大模型在大量包含世界知识的数据集上进行预训练在预训练中,大模型通过调整神经网络的权重,学习理解和生成人类语言,这可以被视为其’记忆”的形成过程。通过使用深度学习神经网络和梯度下降等技术,大模型可以不断提高基于输入预测或生成文本的能力,进而形成世界知识和长期记忆。

第二种是上下文互动。大模型在执行任务时,会将长期记忆和提供的上下文(也就是提示信息)结合起来使用。理想情况下,如果上下文包含与大模型的记忆知识冲突的任务相关信息,那么大模型应优先考虑上下文,以生成更准确和具有上下文特定性的回应。通过诸如知识意识型微调(knowledge-aware fine-tuning)等方法,可以增强大模型在使用上下文和记忆知识方面的可控性和鲁棒性。

第三种是通过针对特定任务的微调进行增强。大模型可以在更具体的数据集上进一步微调,以适应特定行为或提高特定任务的性能。例如,针对SAT(Satisfiability,可满足性)问题数据集进行微调的大模型在回答此类问题时会更加熟练。

第四种是大模型与外部记忆系统整合,通过提供长期记忆来增强大模型性能,使大模型能够记住和回忆过去的互动、理解用户的个性并提供更个性化的互动。这涉及动态个性理解、使用双塔密集检索模型的记忆检索,以及受艾宾浩斯遗忘曲线理论启发的记忆更新机制等。RAG 也可视为和外部知识系统整合的过程,这相当于给大模型提供了一个“外挂第二大脑”

图3:RAG作为外部记忆被AI Agent整合

4. AI Agent的工具调用能力

工具使用是人类的一个显著和独特的特征。我们创造、修改和利用外部物体来做超出我们身体和认知极限的事情。调用工具的能力被视为 Agent的核心技能之一。这些工具可以提供额外的数据、处理能力、专业知识或其他资源,使 Agent能够执行更加复杂的任务。

Agent的能力和效率很大程度上取决于它们能否灵活地调用和利用各种工具。这些工具可以是应用程序、数据库、机器学习模型,甚至是其他 Agent。

图4:工具

ChatGPT 插件(Plugins )和 OpenAI API 函数调用( function calling)是实践中的良好示例,LLMs通过工具能力得到增强。工具 API 的集合可以由其他开发者提供或自行定义

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值